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Article

GPT-4 Can’t Reason

Konstantine Arkoudas

Dyania Health; konstantine@alum.mit.edu

Abstract: GPT-4 was released in March 2023 to wide acclaim, marking a very substantial improvement

across the board over GPT-3.5 (OpenAI’s previously best model, which had powered the initial release

of ChatGPT). Despite the genuinely impressive improvement, however, there are good reasons to be

highly skeptical of GPT-4’s ability to reason. This position paper discusses the nature of reasoning;

criticizes the current formulation of reasoning problems in the NLP community and the way in which

the reasoning performance of LLMs is currently evaluated; introduces a collection of 21 diverse

reasoning problems; and performs a detailed qualitative analysis of GPT-4’s performance on these

problems. Based on the results of that analysis, this paper argues that, despite the occasional flashes

of analytical brilliance, GPT-4 at present is utterly incapable of reasoning.
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1. Introduction

In early January I wrote a commentary1 presenting an informal evaluation of ChatGPT across

a broad range of subject areas: conventional NLU, folk physics, information retrieval, pragmatics,

theory of mind, spatial inference, simple logical reasoning, and math. The key takeaways were that

ChatGPT was a seminal breakthrough; that LLM-based systems are not mere stochastic parrots but

build genuine abstractions and can exhibit creativity; that such systems will enable a large array of

new and exciting applications; and that, despite all of the above, these systems are still severely limited

when it comes to reasoning.

GPT-4 was released a couple of months after that, delivering very substantial improvements

across the board. I remain impressed and excited by the general capabilities and potential of LLMs,

and I have little doubt that their performance will continue to improve in the near future. Nevertheless,

there are increasing grounds for skepticism concerning their reasoning abilities. In this position paper

I will argue that the best LLM at this time, GPT-4, is utterly incapable of reasoning, in spite of its

sporadic displays of ingenuity.

I will largely steer clear of the much broader—and more vague—debate about whether LLMs

in general are capable of (consistently robust) reasoning, but a few brief remarks will help to set the

stage and clarify why it makes sense to restrict attention to a specific LLM. On one side of that broader

debate, rosy predictions by LLM enthusiasts rely excessively on ever-changing scaling “laws” that

rest on flimsy empirical evidence and on a host of questionable modeling assumptions, ill-understood

concepts (such as “emergent” LLM properties2), and a somewhat dogmatic belief that minimizing

cross-entropy loss on next-token prediction over a huge corpus will deliver a general reasoning engine

via the magic of transfer learning and the construction of generic higher-level representations.

On the other side of the debate, while LLM skeptics have serious arguments to make, those

arguments are mostly a priori and somewhat vague (for instance, that LLMs lack “a model of the

world”), and I do not think they settle the question. In my view, the most compelling a priori

considerations against the plausibility of reliably robust LLM reasoning turn on computational

1 A modified version of that is being published in the journal Philosophy & Technology.
2 The notion of an emergent property is clear enough, at least at a high enough level. What is not clear is the relationship

between such properties and LLM architectures, their basic configurations (number of parameters, compute budget, dataset
size, and so on), and more importantly, important tasks such as reasoning.
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complexity results. Reasoning is a (very) computationally hard problem. In fact, in the general

case (first-order or higher-order logic), it is algorithmically undecidable, i.e., every bit as unsolvable as

the halting problem. Thus, by Church’s thesis, we cannot expect any algorithm, LLMs included, to solve

arbitrary reasoning problems in a sound and complete way.3 But even “easier” classes of reasoning

problems4 typically have either exponential or at least nontrivial polynomial-time complexity profiles.

Problem classes that have linear-time inference algorithms, such as Horn clauses over literals, are

rarely expressive enough. This tradeoff between generality and expressivity on the one hand and

tractability on the other means that no LLM, no matter how large or how extensively and cleverly

trained and tuned, will ever be able to crack an arbitrary reasoning problem. And this is consistent with

the famous “no free lunch” theorem of machine learning, which points to a similar inverse relationship

between model generality and performance.

But LLM advocates can make a couple of cogent counterpoints, while granting that there will

never be an AI oracle that can essentially solve the halting problem. First, they can point out that even

though a problem might have high worst-case asymptotic complexity, it might still be solvable well

enough in practice. Unlike random instances, real-world instances of reasoning problems (and indeed

real-world instances of most computationally hard problems) appear to have structure that allows

clever algorithms to tackle them effectively.5 There are many examples here, from the simplex algorithm

for linear programming and SAT solvers to term unification algorithms and even automatic theorem

provers for full first-order logic. All of these problems are hard (having at least exponential-time

worst-case complexity), yet somehow we have algorithms for them that seem to work successfully on

a wide variety of inputs.

Second, and perhaps more important, we need not aim for an oracle anyway. Humans are not

oracles either, nor do they seem to follow any particular algorithm that captures any one specific

class of reasoning problems. The ability of humans to reason is much more fluid and messy, but

impressive nevertheless. Is it impossible to build something like an LLM-based system with the

reasoning ability of a well-trained engineer of average intelligence (which perhaps can then become

even more intelligent and better trained by an endless process of learning and improvement)?

I don’t think that building such a system can be ruled out on a priori grounds (and here I differ

from hard-core AI skeptics). I think it’s implausible, for a number of reasons,6 but ultimately this

strikes me as an empirical question that must be decided on a case-by-case basis, by subjecting a

specific system to testing, i.e., by interrogating it, probing it, and analyzing its responses. And the case

I will consider here is that of GPT-4, which appears, by all accounts, to be the most capable LLM at

present.

There are two questions that must be addressed before we proceed. First, we must agree on what

reasoning is, and second, we must say something about methodology. The next section contains a brief

discussion of reasoning, but for those who wish to skip that section and dive right into the problems,

the upshot is that we’ll focus on (a liberal conception of) deductive reasoning. Regarding methodology,

just like the January piece, my evaluation here is not based on a corpus or set of corpora. Instead, I

3 Or with perfect precision and recall, to put it—more loosely—in ML-like terms.
4 Of which there are many: propositional logic, the two-variable fragment of first-order logic, the Ackerman fragment, the

guarded fragment, various quantifier-prefix fragments, and so on.
5 Understanding that structure and rigorously characterizing its relationship with algorithm performance (e.g., via different

problem parameterizations, such as clause/variable ratios in the case of SAT) is a key open problem in theoretical computer
science, but that is another matter.

6 Humans do not seem to solve problems by predicting the most likely sequence of tokens to generate. They think, explore,
experiment, engage in protracted conversation with the people who posed the problem (sometimes over weeks, months, or
even years), refine, generalize, come up with new concepts and terminology, prove results, make and refute conjectures,
apply heuristics, execute algorithms, analyze and synthesize, and iterate. But how solutions are generated is one thing and
what solutions are generated is another, and that’s why it’s not incoherent to speak of a model whose reasoning performance
is roughly at the same level as that of an average human engineer. Such a claim can be understood operationally, to mean
that a given LLM is able to produce roughly the same solutions that we might reasonably expect an average human engineer
to produce (though obviously on a very different time scale).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2023                   doi:10.20944/preprints202308.0148.v2

https://doi.org/10.20944/preprints202308.0148.v2


3 of 49

present a detailed qualitative analysis of GPT-4’s performance on 21 simple reasoning problems across

a wide range of areas, most of which have been made up from scratch, while the rest (such as Wason’s

selection task) have been manually tweaked so as to make them less recognizable to the model.

This is done partly to avoid data contamination, which is a serious problem affecting corpus-based

evaluations. Given how little we know about the training regimen of ChatGPT, it is impossible to

know for sure whether any existing dataset or problem has effectively been “seen” by the model

during its pretraining or subsequent alignment, whether we’re talking about NLP datasets, medical

licensing exams, Python programming problems, LSAT or bar-entrance exams, SAT or GRE tests, and

so on.7 The qualification “effectively” is important, because even though a specific problem might not

have been seen in its exact form (in a string-matching sense), an essentially equivalent variant with

a different surface formulation might well have been. Hence, simple contamination tests based on

substring checks, such as those carried out by OpenAI in their GPT-4 Technical Report [8] (posted in

March 2023), are not sufficient to guarantee lack of contamination.8

The absence of a large corpus makes the discussion more qualitative rather than quantitative.

However, the results are arguably more informative than a numeric metric computed over a corpus, for

a number of reasons. First, because contamination can be ruled out conclusively; second, because the

problems span a large gamut of areas; and third, because a qualitative discussion of a problem allows

for greater depth of analysis and more context in which to interpret the results. By contrast, the only

way to perform a truly informative quantitative evaluation is to come up with a brand new corpus that

satisfies all of the following criteria: (a) originality; (b) uniformly high quality; (c) sufficiently large size;

and (d) diversity (not being limited to one type of task only). This is a very challenging undertaking.

Even then, a few simple numeric metrics on a brand new dataset might not be particularly illuminating.

Are the numbers measuring the right things? Do we even know the right things to measure? Is there

an appropriate backdrop in which the numbers can be understood? For deeper insight, we need to put

individual examples under a magnifying glass.

This is particularly important because we need to scrutinize the explanations (“chains of thought”)

generated by a reasoner. Unfortunately, almost all reasoning corpora comprise either multiple-choice

questions or binary classification problems (e.g., “Does sentence p2 follow from premise p1, yes or

no?”). Why? Mostly because it is easy to mechanically evaluate model performance on such datasets.

But even in the absence of contamination, this type of test set runs the serious risk that the LLM will

manage to pick the right answers by latching on to spurious statistical regularities, i.e., to arrive at the

right answers for the wrong reasons [6,10].9 Adversarial augmentation of an existing dataset might

help, especially if we know what we are trying to guard against, but unless an adversarial version

restores near-random performance, this can quickly devolve into a game of whac-a-mole, where we

detect a new round of bogus regularities exploited by the model and must undertake a new round of

adversarial interventions.

Ultimately, there is really no proper way to assess the reasoning ability of a system unless we

ask it to explain its output. This is an essential part of reasoning, which is not about producing the

right answer by hook or by crook but about deriving the right answer for the right reasons. And rote

metrics like ROUGE-L are not fit for purpose here. We need to roll up our sleeves and analyze LLM

explanations and proof attempts manually. We also need to gauge their performance in a dialog

7 According to the analysis carried out by the lm-contamination index, well-known NLP datasets such as Squad, CoNLL03,
MNLI, and others, are indeed contaminated, while several others are at best suspicious.

8 In fact, the substring checks carried out by OpenAI were not even applied on the entire problem instance, only on 3 randomly
selected substrings of 50 characters each. This is not enough to ensure disjointness for long (or even moderately long)
problems, which are quite common in tests like the UBE (Uniform Bar Exam).

9 Models have been shown to leverage the presence of certain cue words (especially negation words) and to formulate
quick-and-dirty (i.e., unsound) heuristics such as lexical overlap, subsequence, and constituency [6]. Most of these results
are from 2019 and revolve around BERT, but more recent work [9] has shown that while larger foundational models such as
ChatGPT are more robust to input perturbations and OOD (out-of-distribution) samples, these continue to be challenges,
suggesting that even ChatGPT-scale models learn unsound shortcuts.
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setting (e.g., what happens when a reasoning error is pointed out to them?). This is the sort of analysis

undertaken in this paper. I believe the results show unequivocally that GPT-4 cannot reason. The

errors are too pervasive and too egregious. GPT-4 doesn’t solve even one of the 21 problems discussed

here. But much more concerning are the fundamentally flawed explanations and proof attempts it

produces along the way.

LLM believers will probably demur: But humans also make mistakes, and surely we’re not prepared to

say that humans can’t reason just because they make mistakes? First, it is not accurate to say without

qualification that “humans can reason,” certainly not in the sense that we can randomly pluck

any person from the street and expect them to reliably perform normatively correct reasoning.

Most neurobiologically normal humans have the capacity to become proficient in reasoning, but

actually attaining such proficiency takes significant training and discipline. Humans are known to

be susceptible to a large assortment of cognitive biases, which can only be overcome by rigorous

instruction. Focusing on the reasoning skills of untrained people is a bit like focusing on the singing

skills of the general population. Everybody sings in the shower, but without formal training (or at

least exceptional talent) the results are usually regrettable.

Of course, even sophisticated human reasoners make mistakes, just like trained singers can

hit false notes. But if a human made these mistakes, the ones reported in this article, then I would

conclude without any hesitation that they cannot reason. Even if they went on to list a large number

of other examples demonstrating impeccable reasoning, I would suspect that other factors (such as

rote memorization or cheating) were behind the performance discrepancy. For the mistakes reported

here are not performance mistakes, the sort of innocuous errors that humans might make—and

promptly correct—when they are careless or tired. If a human made these mistakes, and made them

consistently under repeated questioning, that would indicate without doubt that they don’t have

the necessary logical competence, that they lack fundamental concepts that are part and parcel of

the fabric of reasoning, such as logical entailment and set membership. And I would certainly not

entrust that person with generating reams of Python or Javascript code for an enterprise. Nor would I

start organizing international conferences to investigate how their reasoning prowess might threaten

humanity with extinction.

2. What is Reasoning?

Reasoning is not quite the same thing as intelligence, but it’s a necessary ingredient for it. Broadly

put, reasoning is the process of drawing and evaluating conclusions from a given body of information.

More precisely, it is the process of making and—more importantly—justifying arguments. An argument

consists of a conclusion (the argument’s upshot, so to speak) and a set of premises from which the

conclusion is derived. Premises represent information that is taken as given, if only provisionally, for

the purposes of the argument. The conclusion and the premises are typically declarative sentences

(expressed either in natural language or in the notation of a symbolic logic) that can be true or false,

but they may also be represented by alternative notational devices, such as diagrams. We say that

a set of premises S logically entails (or logically implies) a conclusion p iff p is true whenever all the

sentences in S are true, in which case the argument is said to be valid. This means that it’s logically

impossible to have a state of affairs in which every element of S holds but p does not. This key logical

relationship is a linchpin of human reasoning.10

10 Here we understood premises and conclusions as syntactic objects (sentences or diagrams), but there are alternative
approaches. For instance, a semanticist might think of premises and conclusions as propositions, abstract objects capable
of being true or false. A sentence then expresses or represents a proposition. Propositions are handy theoretical entities for
many reasons. For example, they can serve as the objects of psychological attitudes such as beliefs and desires. What do I
mean when I claim to believe that Obama won the 2012 presidential election? Surely I don’t believe a particular sentence,
i.e., a specific syntactic object like “Obama won the 2012 US presidential election” (I). Rather, I believe something about
the way the world actually is. That something can be understood as a proposition, a unique entity that can expressed
by many different equivalent sentences. Propositions can be cashed out in modal terms, as sets of possible worlds (or as

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2023                   doi:10.20944/preprints202308.0148.v2

https://doi.org/10.20944/preprints202308.0148.v2


5 of 49

Valid deductive arguments (whose conclusions are entailed by the premises) are said to be

analytical (or sometimes tautological), insofar as, technically speaking, they convey no information.11

This idea is also sometimes expressed by calling such arguments non-ampliative, meaning that there

is no information contained in the conclusion that is not already contained—if only latently—in the

premises. Deduction is the process of making and justifying non-ampliative arguments.

Deductive arguments are typically justified by proofs, which are sequences of inference steps,

each of which applies an inference rule to a number of premises and/or results of previous steps and

derives a new result. The last step derives the final conclusion of the proof. An inference rule may be

low-level and easy to apply or higher-level and computationally expensive. But all inference rules

are required to be sound (or truth-preserving), that is, they must ensure that if the inputs are true then

so is the output. All mathematical proofs are deductive, and mathematical reasoning in general is

predominantly deductive.12

The conventional view is that some arguments are ampliative, meaning that the conclusion is not

quite entailed by the premises. In other words, it is possible for the premises to be true while the

conclusion is false. These are typically subdivided into inductive and abductive arguments,13 although

some authors view induction as a species of abduction, and even more authors view abduction as

a species of induction. There is no rigorous definition of either, but roughly, the premises of a good

inductive argument make its conclusion likely, though never quite certain (in contrast to deduction,

where the truth of the premises guarantees the truth of the conclusion). Induction can generate

specific conclusions from all kinds of premises (specific or general), but often it proceeds from specific

“situations” in situation-theoretic semantics [2]). A possible world is a way in which things might have been, but described
completely, down to the most minute detail (unlike situations, which can be thought of as partial specifications of worlds).
So the proposition that Obama won the 2012 US presidential election is identified with the set of all possible worlds in
which Obama won that election. This set becomes the information content of sentences such as (I). Propositions can also
serve to analyze fundamental semantic notions such as entailment. A set of premises {p1, . . . , pn} entails a conclusion p
iff the intersection of the sets of possible words represented by all the pi is a superset of the set of worlds represented by
p. This is another way of understanding the claim that the conclusion of a valid deductive argument does not introduce
any information that is not already contained in the premises. Note, however, that while the possible-worlds approach to
propositions is very powerful, it also suffers from severe defects, as it is notoriously coarse-grained, meaning that it cannot
distinguish between propositions that we intuitively regard as quite distinct. This is perhaps easier to see in the case of
mathematical truths, which, being necessary (true in all possible worlds), are collapsed into one and the same object, the
set of all possible worlds (and dually, of course, all contradictions are identified with the empty set of worlds). As a result,
the proposition that 1 + 1 = 2 and Fermat’s theorem become identical, as they have the exact same information content.
There have been attempts to address these issues (structured propositions and impossible worlds being two of the most
prominent), but the interested reader will have to consult the literature for more details.

11 This can be made more precise using information-theoretic notions, at least in the case of propositional logic, where we have
an infinite supply of formulas that are either atomic (propositional variables) or else Boolean combinations of formulas.
Instead of imposing the usual Kolmogorov axioms on a probability measure defined over a set of events (a σ-field) from
a sample space Ω, we impose the same axioms (non-negativity, finite additivity, and the axiom that assigns a measure
of 1 to every tautology—the analogue of P(Ω) = 1) on a probability measure defined over the set of all formulas. Then
truth and falsity become the extreme probabilities of 1 and 0, respectively. This allows us to associate a probability P(φ)
with any sentence (event) φ, and hence every sentence φ automatically gets an information content in the usual way:
IC(φ) = − logP(φ). To say that the information content of a valid deductive argument with premises {p1, . . . , pn} and
conclusion p is zero is simply to say that the conditional p1 ∧ · · · ∧ pn ⇒ p is a tautology. By definition, a tautology φ has
probability 1, and therefore IC(φ) = 0.

12 At this point the reader might ask: If deductive arguments convey zero information, why bother with them? Indeed, if
all mathematical proofs are proofs of tautologies, with zero information content, what is their point? The thinking is that
arguments with no information content are not useful, so if all deductive arguments (including all mathematical results)
have zero information content, then they are not useful. This is, in brief, the so-called “scandal of deduction” (named
by parity to the “scandal of induction,” i.e., Hume’s problem of induction). There have not been any widely accepted
resolutions of this ostensible paradox. But few of course doubt that mathematical results are actually informative and extend
our knowledge. (Surely if we woke up tomorrow and read that someone proved P 6= NP, that would be tremendously
informative.) It’s also clear that the word “information” has a number of informal meanings that are not captured by
the canonical definition of information content (as the negative logarithm of probability), and most efforts to resolve the
“scandal of deduction” have attempted to formalize distinct notions of informational gain that would render deductive
arguments informative.

13 Several other types of reasoning are often discussed in the literature, such as analogical reasoning (which includes, for
instance, case-based reasoning), Bayesian reasoning, causal reasoning, and so on, but these are usually subsumed under one
of the three main categories I have described, most often under induction. (But there is no consensus, for instance, some
thinkers, from Aristotle to recent authors, have tried to assimilate analogical reasoning under deduction.)
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individual observations o1, . . . , on to a more general hypothesis H that subsumes the individual oi in

some sense (for instance, H may be a universally quantified sentence and the oi could be instances of

that sentence). Much of what ML algorithms do can be viewed as inductive reasoning. For instance, a

linear-regression algorithm might take as input n datapoints about car models, where each datapoint

is of the form di = ((ci, hi, yi), mi) for i = 1, . . . , n, where ci is the number of cylinders for the ith car

model, hi is the horsepower, yi is the model year, and the dependent variable mi is the mpg (miles

per gallon). And it might produce as output a formula like m = w1 · c + w2 · h + w3 · y + b, which

predicts the mpg of a car model from its number of cylinders, horsepower, and model year.14 Here

w1, w2, w3, and b are specific numbers (weights) representing a hyperplane that minimizes the mean

squared error for the input data (meaning that the hyperplane determined by these weights might not

fit the n datapoints perfectly, but it does so better than the hyperplane determined by any other set of

weights).15

The main distinguishing feature of abductive reasoning is a strong emphasis on explanation.

Abduction consists mostly in making and justifying arguments that explain a set of facts. If one

day I come home early from work and I see a plumber’s van parked in my neighbors’ driveway, I

might conclude that my neighbors are having some plumbing work done in their house. The premise

here is “There is a plumbing van parked in my neighbors’ driveway” and the conclusion is “My

neighbors are having plumbing work done in their house.” This is sometimes called “inference to

the best explanation,” because the conclusion serves to explain the premise(s). This is also a form of

ampliative reasoning—the conclusion does not follow logically from the premises. There are many

alternative explanations of a given set of facts or observations (perhaps a plumber parked there

temporarily, or the neighbors bought the van, or the neighbors have a plumber friend who is making a

social visit, and so on). A good abductive inference will yield a hypothesis that has more explanatory

value than competing hypotheses. But how exactly to measure the quality of an abductive piece

of reasoning is an open question.16 Note that it doesn’t take a large leap of imagination to view

induction as a form of abduction. Observing a large number of black (and only black) swans and

then conjecturing that all swans are black could be seen as abductive reasoning, as the conclusion

∀ x . swan(x) ⇒ color(x) = black would explain all the observed data. Linear regression can also be

seen as the making of an abductive hypothesis, as can (much more generally) Maximum Likelihood

Estimation, a principle that underlies many ML algorithms and is often associated with induction.

All of the above is received wisdom, but it’s worth mentioning that there have been thinkers,

called “deductivists” (ranging from philosophers such as Popper and Musgrave to statisticians such as

Fisher), who contend that deduction is the only real form of reasoning there is, insofar as it’s the only

one for which we have a rigorous and properly understood formal notion of validity; and that other

(ampliative) arguments are best understood as reconstructed deductions, typically as enthymemes

(arguments that omit tacitly understood premises). I find that position congenial,17 but venturing into

that discussion would take us too far afield. For present purposes it suffices to say that we will focus

on deduction, because it is the type of reasoning that underpins most logico-mathematical thought

and for which we have clear normative standards of evaluation.

14 We are assuming of course that the car model whose mpg we are predicting was not included in the given data, otherwise
there would be no prediction or generalization involved.

15 The training of deep neural networks, too, works by trying to discover values for various weights that are “optimal” for a
given training dataset (in that they minimize loss), except that in their case the relationship between the inputs, outputs, and
weights can be much more complicated (non-linear) and the training algorithm might not converge to the optimal weight
values.

16 Some desired properties of explanations are obvious. Truth is one of them—a good explanation cannot be based on a false
hypothesis. But other desired properties, such as parsimony and generality (explaining as much as possible while assuming
as little as possible) are much harder to explicate.

17 Even from a purely linguistic viewpoint, it doesn’t seem appropriate to say that I have “concluded” or “derived” or “inferred”
anything at all in the swan or in the plumber examples. I have simply made a tentative hypothesis (or conjecture), which
might be refuted.
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An important note: I view the discovery and justification of particular models (including

counterexamples and countermodels in general) as part and parcel of reasoning. This is not a

controversial view; some cognitive scientists view models and associated cognitive processes as

the fundamental ingredients of human reasoning [11]. In addition, however, I view model-based

reasoning as at least partly deductive, because even though the actual process of discovering models

might not be a process of deduction18, its outcome is a claim (namely, that a given interpretation

satisfies a set of premises) that can be verified or falsified deductively, taking as premises the definition

of the model itself and possibly other general knowledge about the model’s domain. Indeed, I will

consider even computation as a form of deduction, because a particular computation can be naturally

regarded as a deductive derivation of a conclusion of the form f (e1, . . . , en) = v, where f (e1, . . . , en)

is the application of an arbitrary function f to arbitrary argument expressions e1, . . . , en, ultimately

yielding value v as the result. The premises for the derivation consist of the definition of f and possibly

other auxiliary functions, along with the usual equational axioms (reflexivity, symmetry, transitivity,

and functional/relational congruence).19

3. Test Problems

This section will start with the usual caveat: GPT-4 is a nondeterministic system that might

produce different answers on different runs, even with the same parameter settings. All of the

following exchanges with GPT-4 have been transcribed verbatim, and in my experience the errors

discussed here tend to be robust, but it’s conceivable that for a given example GPT-4 might generate a

different output even in response to the exact same prompt.20

3.1. Simple Arithmetic

The ability to perform basic arithmetic is a necessary ingredient for reasoning. GPT-4 is still

unable to reliably perform elementary arithmetic operations such as addition and multiplication. To

ensure that GPT-4 isn’t falling back on rote memorization, we can ask it to first select two random

integers in a range of our choice and then perform the operation on the selected values:

KA: Select two random numbers between 1381 and 1453 and multiply them together, reporting the result.

GPT-4: Sure, let’s select two random numbers in the range of 1381 to 1453. Let’s say these numbers are 1405

and 1421.

To get the product, we simply multiply these two numbers together:

1405 * 1421 = 1996025

Alas, the correct answer is 1405 · 1421 = 1996505.

One response here from the LLM camp has been to concede that GPT-4 is not a Turing-complete

framework and cannot perform general-purpose computation: It can’t add, multiply or divide, it can’t

sort lists, it can’t invert matrices or solve systems of differential equations, it can’t compile arbitrary

programs to machine code, it can’t derive theorems, and so on ad infinitum. Nevertheless, the response

goes, these computational “gaps” can be filled by plug-ins, along the lines of the ReAct (short for

“Reasoning and Acting”) [4] or MRKL (short for “Miracle”) [3] frameworks. It is this line of work that

has led to systems such as LangChain and AutoGPT. The idea here is to use the LLM as a planner to

recursively decompose a complex problem into a sequence of subproblems that can be dispatched to

appropriate specialized agents via appropriate APIs.

18 In the same way that even the process of discovering deductions is not itself deductive, at least not entirely so. Both are
fundamentally search processes, though they are almost certainly informed and generally penetrated by deduction.

19 This viewpoint assumes a functional-programming stance, but computation can be readily reduced to deduction in any
other style of programming (e.g., imperative) by an appropriate axiomatic formulation of the relevant semantics (e.g.,
operational semantics using stores).

20 In addition, of course, different versions of GPT-4 might get deployed at any time.
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The problem with this approach is its circularity. Planning itself requires reasoning, so this is a

Catch-22 situation: We can’t solve reasoning by delegating to appropriate agents, because figuring out

the delegation (how the problem should be decomposed, which agents to call and how, and how to

compose the results) is itself computationally infeasible. It not only requires the ability to understand

natural language, but also the ability to reason about preconditions and effects. And this is assuming

a fixed collection of agents with clear-cut APIs.21 Even under these overly simplistic assumptions,

planning is very computationally expensive (PSPACE-complete), and radical simplifications are needed

to scale down the complexity even to the level of NP-completeness. Under more realistic assumptions,

planning is performed under incomplete knowledge and it is mechanically undecidable. As we

understand them today, expecting generic LLMs to tackle planning with any degree of success is naive.

3.2. Simple Counting

While concrete counting is not necessarily a reasoning activity,22 it is surely a requirement for any

generally capable reasoning system. Here I give GPT-4 a propositional variable with 27 negation signs

in front of it and ask it to count the number of negations. For a human this would be an easy task,

especially because the negation signs are written in five blocks with five tildes each, followed by a

final pair of negation signs.

KA: How many times is p negated in the following formula:
∼∼∼∼∼ ∼∼∼∼∼ ∼∼∼∼∼ ∼∼∼∼∼ ∼∼∼∼∼ ∼∼ p?

GPT-4: The formula you’ve given includes 28 negation symbols (“∼”) in front of the propositional variable

“p”. In logic, the negation symbol changes the truth value of a statement to its opposite. If a statement is true,

its negation is false, and vice versa. Double negation, like “∼∼ p”, is equivalent to “p”, because negating a

proposition twice returns it to its original truth value.

Given this, to find the effective number of negations, we can simply divide the total number of negation

symbols by 2. If there’s a remainder, then there is a net negation. If not, then there isn’t.

28 divided by 2 is 14, with no remainder, meaning there’s no net negation. So effectively, the variable “p” is

not negated in the given formula. It’s equivalent to just “p”.

A difference of one negation sign might not seem like a serious matter, until you realize that it makes

all the difference in logical import,23 as GPT-4’s own (unsolicited) explanation stresses. Repeating this

experiment multiple times gave widely different results (including 50 and 54), even after explicitly

telling GPT-4 to take its time and count carefully.

Here is another example. I greet GPT-4 five times in a row and then I ask it a simple question:

KA: Hi

GPT-4: Hello! How can I assist you today?

KA: Hello

GPT-4: How can I assist you today?

KA: Greetings

GPT-4: Greetings! How can I assist you today?

KA: Hi there.

21 An unrealistic assumption given that the Internet is filled with an unbounded number of agents (millions of them, from
completely arbitrary computer programs to smart-phone apps to travel-booking APIs to games and beyond) that provide
an open-ended and constantly changing array of functionality.

22 By concrete counting I mean counting a number of specific object tokens instantiated in space and time, as in the coins in
one’s pocket or the number of lines in a text file. By contrast, abstract counting based on combinatorial principles, search
procedures, and logical constraints (like the scheduling problem in Section 3.9) is indeed a reasoning activity.

23 In the same way that the numbers 100000 and 1000000 only differ in one zero, but if we are talking about your bank balance
that one zero makes a huge difference.
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GPT-4: Hi there! How can I help you today?

KA: Hullo!

GPT-4: Hello! How can I assist you today?

KA: You’ve been greeted a few times so far. Three of those greetings were actually from my girlfriend, the rest

from me. How many times did I greet you?

GPT-4: If your girlfriend greeted me three times and all the other greetings were from you, then you greeted me

four times. This is assuming that all seven greetings (“Hi”, “Hello”, “Greetings”, “Hi there”, “Hullo!”) were

included in the count.

In this case the arithmetic is correct (7 − 3 = 4) but the count—and ultimately the resulting answer—is

hallucinated.

3.3. (Medical) Common Sense

In the present setting we may regard commonsensical arguments as straightforward

enthymematic deductions of conclusions from given information plus unstated premises that constitute

tacit, generally accepted background knowledge. In this particular case, such common-sense

knowledge would be propositions like “A person is alive until they die, after which they do not

become alive again.”

KA: Mable’s heart rate at 9 AM was 75 bpm and her blood pressure at 7 PM was 120/80. She died at 11 PM.

Was she alive at noon?

GPT-4: Based on the information provided, it’s impossible to definitively say whether Mable was alive at noon.

The data points provided (heart rate at 9 AM and blood pressure at 7 PM) both indicate that she was alive at

those times. However, without additional information about her condition between 7 PM and 11 PM, or at noon

specifically, we can’t make a certain determination about her status at noon.

Remember, medical information can be complex and nuanced. Understanding a person’s health status

often requires a comprehensive examination and should be performed by a healthcare professional. If this is a

hypothetical question, keep in mind that real-life situations would require more complete information.

No comment is needed here, though the gratuitous—but by now de

rigueur—piece of legalese issuing the vague disclaimer at the end

(“this-is-a-complex-issue-and-make-sure-to-consult-with-a-professional”) seems ironic.

3.4. Elementary Logic

If P(x) implies Q(x) and Q(a) does not hold then we can infer, by modus tollens, that P(a) does

not hold either (because if it did then Q(a) would too). This is as elementary of a tautology as can be,

yet GPT-4 is perfectly willing to produce a countermodel:

KA: Find a model in which P(x) implies Q(x), Q(a) does not hold, and P(a) holds.

GPT-4: To find a model in which P(x) implies Q(x), Q(a) does not hold, and P(a) holds, let’s consider the

following interpretations:

1. P(x): x is an even number
2. Q(x): x is a positive number
3. a: −2

Now, let’s check if these interpretations satisfy the given conditions:

1. P(x) implies Q(x): If x is an even number, then x is a positive number. This statement is not universally

true, as we can have negative even numbers. However, it does not preclude the existence of a model with

the other given conditions.
2. Q(a) does not hold: Q(−2) means −2 is a positive number, which is false. So, this condition is satisfied.
3. P(a) holds: P(−2) means −2 is an even number, which is true. So, this condition is also satisfied.
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Thus, the model with the interpretations P(x): x is an even number, Q(x): x is a positive number, and a: −2

satisfies the conditions P(x) implies Q(x), Q(a) does not hold, and P(a) holds.

Observe that GPT-4 recognizes that P(x) does not in fact imply Q(x) under the interpretation it gave,

but it nevertheless dismisses this inconvenient consideration because “it does not preclude the existence

of a model with the other given conditions,” as if the satisfaction of the other conditions was enough (it

isn’t; a countermodel must satisfy all of the given premises while falsifying the conclusion). Moreover,

just a few sentences later GPT-4 claims that P(x) does imply Q(x) under the given interpretation,

contradicting its own earlier claim. We will see that internal inconsistency is a recurrent theme.

When we ask it to elaborate on why it thinks that P(x) implies Q(x), GPT-4’s response is revealing:

KA: Can you explain why this model satisfies the first constraint (namely, that P(x) implies Q(x))?

GPT-4: You are correct that my previous explanation was not clear enough for the first constraint. I apologize

for that. In the given model, P(x) does not necessarily imply Q(x). Let’s reconsider the model and find one that

satisfies all the constraints.

1. P(x): x is a multiple of 4
2. Q(x): x is an even number
3. a : 4

Now let’s check if these interpretations satisfy the given conditions:

1. P(x) implies Q(x): If x is a multiple of 4, then x is an even number. This statement is universally true

because every multiple of 4 is also a multiple of 2, making it an even number.
2. Q(a) does not hold: Q(4) means 4 is an even number, which is true. So, this condition is not satisfied.

To satisfy all three conditions, we can modify the interpretations as follows:

1. P(x): x is a positive multiple of 4
2. Q(x): x is a positive even number
3. a : −4

Now let’s check if these interpretations satisfy the given conditions:

1. P(x) implies Q(x): If x is a positive multiple of 4, then x is a positive even number. This statement is

universally true because every positive multiple of 4 is also a multiple of 2, making it a positive even

number.
2. Q(a) does not hold: Q(−4) means −4 is a positive even number, which is false. So, this condition is

satisfied.
3. P(a) holds: P(−4) means −4 is a positive multiple of 4, which is false. So, this condition is not satisfied.

It seems that finding a model that satisfies all three conditions is challenging. I must correct my previous claim:

there may not be a model that satisfies all three conditions, P(x) implies Q(x), Q(a) does not hold, and P(a)

holds, simultaneously.

Thus, after multiple unsuccessful attempts to find a countermodel, GPT-4 acknowledges that such a

countermodel might not exist. But, remarkably, when GPT-4 is asked to settle the matter one way or

the other, it jumps back to the position that a countermodel does exist after all.

KA: Can you prove that one exists or that one does not exist?

GPT-4: I apologize for the confusion earlier. Let me provide a formal proof to show that a model that satisfies

all three conditions P(x) implies Q(x), Q(a) does not hold, and P(a) holds does indeed exist. Let’s consider a

model with the following interpretations:

1. P(x): x is an element of set A
2. Q(x): x is an element of set B
3. a: a specific element, a
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Now, let’s define the sets A and B as follows:

Set A = {a}.

Set B = {x | x is an element of A and x 6= a}.

Now, let’s check if these interpretations satisfy the given conditions:

1. P(x) implies Q(x): If x is an element of set A, then x is an element of set B. In this case, since the only

element in set A is a, and set B is defined such that it contains all elements of A except a, this implication

is vacuously true. This is because there are no other elements in set A for which the implication would be

false.
2. Q(a) does not hold: Q(a) means a is an element of set B. By definition, set B does not include a, so this

condition is satisfied.
3. P(a) holds: P(a) means a is an element of set A. Since set A is defined to contain only a, this condition is

also satisfied.

Thus, the model with the interpretations

P(x): x is an element of set A,

Q(x): x is an element of set B,

and a: a specific element,

satisfies the conditions P(x) implies Q(x), Q(a) does not hold, and P(a) holds.

The response verges on nonsensical. GPT-4 has defined B (in a roundabout way) as the empty set ∅,

so that Q is always false. This means that P(x) cannot possibly imply Q(x) as long as there is a single

value of x for which P(x) holds—and GPT-4 itself has provided such a value: x = a. Yet somehow

GPT-4 claims that P(x) implies Q(x).

KA: Can you again explain why P(x) implies Q(x) in this model?

GPT-4: You are correct. My previous explanation for P(x) implies Q(x) was not accurate. I apologize for the

confusion. I will now provide a correct model that satisfies all three conditions. Let’s consider a model with the

following interpretations:

1. P(x): x is divisible by 3
2. Q(x): x is divisible by 2
3. a: 3

Now, let’s check if these interpretations satisfy the given conditions:

1. P(x) implies Q(x): If x is divisible by 3, then x is divisible by 2. This statement is not universally true.

However, we can create a domain D that contains only one element, a = 3, which is divisible by 3 but not

by 2. By restricting the domain, the implication P(x) implies Q(x) becomes vacuously true within the

domain D because there are no elements in D for which the implication would be false.
2. Q(a) does not hold: Q(3) means 3 is divisible by 2. Since 3 is not divisible by 2, this condition is satisfied.
3. P(a) holds: P(3) means 3 is divisible by 3. Since 3 is divisible by 3, this condition is also satisfied.

Thus, the model with the interpretations

P(x): x is divisible by 3,

Q(x): x is divisible by 2, and

a: 3,

and the domain D = 3 satisfies the conditions P(x) implies Q(x), Q(a) does not hold, and P(a) holds.

3.5. Simple Quantifier Semantics

Here we give GPT-4 two easy problems to test its understanding of quantifiers. Here is the first

problem:

KA: Consider the following three sentences:

1. [forall x . P(x) ==> Q(x)]
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2. [exists x . P(x)]

3. [exists x . ∼ Q(x)]

Either disprove or prove the following claim: These three sentences are jointly satisfiable.

GPT-4: The three sentences are not jointly satisfiable. Here’s why:

1. [forall x . P(x) ==> Q(x)] says that for all x, if P(x) is true then Q(x) is true.
2. [exists x . P(x)] says that there exists at least one x such that P(x) is true.
3. [exists x . ∼ Q(x)] says that there exists at least one x such that Q(x) is not true.

If we consider sentence 2, there exists at least one x such that P(x) is true. According to sentence 1, for this

x (or these x’s), Q(x) must also be true.

However, sentence 3 states that there exists at least one x for which Q(x) is not true. Given sentences 1 and

2, this cannot be the case - there cannot exist an x for which P(x) is true and yet Q(x) is not true. Therefore, the

three sentences are not jointly satisfiable.

The sentences are clearly jointly satisfiable, a trivial model being the domain {a1, a2} with P(a1), Q(a1),

¬P(a2), and ¬Q(a2).

The second problem concerns this biconditional:

[∀ x . P(x) ⇔ Q(x)] ⇔ [(∀ x . P(x)) ⇔ (∀ x . Q(x))] (1)

The left-to-right implication holds, but the right-to-left direction fails. Counterexamples are easy to

find, for example, take the domain to be integers, P(x) to mean x is even and Q(x) to mean x is odd.

Then the equivalence on the right-hand side of (1) holds, but clearly it’s not true that every integer is

even iff it is odd.

KA: Prove or disprove the following: (forall x . P(x) <==> Q(x)) holds if and only if the following

biconditional holds: (forall x . P(x)) <==> (forall x . Q(x)).

GPT-4: We will prove this statement by showing that both directions of the main biconditional hold.

• (forall x . P(x) <==> Q(x)) implies (forall x . P(x)) <==> (forall x . Q(x)) Assume that

for all x, P(x) <==> Q(x) holds.

Direction 1: If forall x, P(x) holds, we need to show that forall x, Q(x) holds. Since P(x) <==> Q(x) for

all x, if P(x) holds for all x, then Q(x) must also hold for all x, as they are equivalent.

Direction 2: If forall x, Q(x) holds, we need to show that forall x, P(x) holds. Since P(x) <==> Q(x) for

all x, if Q(x) holds for all x, then P(x) must also hold for all x, as they are equivalent.

Thus, we have shown that (forall x . P(x)) <==> (forall x . Q(x)) holds when (forall

x . P(x) <==> Q(x)) holds.
• (forall x . P(x)) <==> (forall x . Q(x)) implies (forall . P(x) <==> Q(x)) Assume that

(forall x . P(x)) <==> (forall x . Q(x)) holds.

We need to show that for all x, P(x) <==> Q(x).

Let x be an arbitrary element from the domain of discourse. We will consider the two directions of the

biconditional P(x) <==> Q(x):

Direction 1: If P(x) holds, we need to show that Q(x) holds. If P(x) holds for our arbitrary x, then it

must be the case that forall x, P(x) holds. Since (forall x . P(x)) <==> (forall x . Q(x)) holds, it

follows that forall x, Q(x) holds. Therefore, Q(x) must hold for our arbitrary x as well.

Direction 2: If Q(x) holds, we need to show that P(x) holds. If Q(x) holds for our arbitrary x, then it

must be the case that forall x, Q(x) holds. Since (forall x . P(x)) <==> (forall x . Q(x)) holds, it

follows that forall x, P(x) holds. Therefore, P(x) must hold for our arbitrary x as well.
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Thus, we have shown that for all x, P(x) <==> Q(x) holds when (forall x . P(x)) <==> (forall

x . Q(x)) holds.

In conclusion, we have shown that (forall x . P(x) <==> Q(x)) holds if and only if (forall

x . P(x)) <==> (forall x . Q(x)) holds.

Notice how pernicious the fallacy is here: “If P(x) holds for our arbitrary x, then it must be the case that

forall x, P(x) holds.” It sounds plausible, but of course it is quite wrong.

KA: Can you elaborate on your claim “If P(x) holds for our arbitrary x, then it must be the case that forall x,

P(x) holds”?

GPT-4: You are correct to question that claim. It was a mistake in my response. I apologize for the confusion,

and I appreciate your attention to detail. Here is the corrected proof.

(forall x . P(x) <==> Q(x)) implies (forall x . P(x)) <==> (forall x . Q(x))

Assume that for all x, P(x) <==> Q(x) holds.

Direction 1: If forall x, P(x) holds, we need to show that forall x, Q(x) holds. Since P(x) <==> Q(x) for

all x, if P(x) holds for all x, then Q(x) must also hold for all x, as they are equivalent.

Direction 2: If forall x, Q(x) holds, we need to show that forall x, P(x) holds. Since P(x) <==> Q(x) for

all x, if Q(x) holds for all x, then P(x) must also hold for all x, as they are equivalent.

Thus, we have shown that (forall x . P(x)) <==> (forall x . Q(x)) holds when (forall

x . P(x) <==> Q(x)) holds.

(forall x . P(x)) <==> (forall x . Q(x)) implies (forall x . P(x) <==> Q(x))

Assume that (forall x . P(x)) <==> (forall x . Q(x)) holds.

We need to show that for all x, P(x) <==> Q(x).

Let x be an arbitrary element from the domain of discourse. We will consider the two directions of the

biconditional P(x) <==> Q(x):

Direction 1: If P(x) holds, we need to show that Q(x) holds. If P(x) holds for our arbitrary x, we

cannot directly conclude that forall x, P(x) holds. However, we can proceed as follows: Since (forall

x . P(x)) <==> (forall x . Q(x)) holds, either both sides of the biconditional are true or both sides are false.

If forall x, P(x) holds, then by the biconditional, forall x, Q(x) must hold as well, and thus Q(x) holds for our

arbitrary x. If it is not the case that forall x, P(x) holds, then there must be some x where P(x) does not hold.

But, for our arbitrary x, P(x) holds, which means our arbitrary x cannot be one of those instances. In this case,

it is not guaranteed that Q(x) holds for our arbitrary x.

Direction 2: If Q(x) holds, we need to show that P(x) holds. Similarly, if Q(x) holds for our arbitrary x,

we cannot directly conclude that forall x, Q(x) holds. We can use the same approach as in Direction 1. Since

(forall x . P(x)) <==> (forall x . Q(x)) holds, either both sides of the biconditional are true or both sides

are false. If forall x, Q(x) holds, then by the biconditional, forall x, P(x) must hold as well, and thus P(x) holds

for our arbitrary x. If it is not the case that forall x, Q(x) holds, then there must be some x where Q(x) does not

hold. But, for our arbitrary x, Q(x) holds, which means our arbitrary x cannot be one of those instances. In this

case, it is not guaranteed that P(x) holds for our arbitrary x.

As we cannot guarantee that P(x) <==> Q(x) for our arbitrary

KA: Please continue.

GPT-4: My apologies for the premature ending in my previous response. Let me provide an alternative

approach to the proof for the second part. (forall x . P(x)) <==> (forall x . Q(x)) implies (forall

x . P(x) <==> Q(x)) Assume that (forall x . P(x)) holds.

We need to show that for all x, P(x) <==> Q(x).

Let x be an arbitrary element from the domain of discourse. We will consider the two directions of the

biconditional P(x) <==> Q(x):

Direction 1: If P(x) holds, we need to show that Q(x) holds. We will use proof by contradiction. Assume

that Q(x) does not hold for our arbitrary x. Now, since Q(x) does not hold, it cannot be the case that forall

x, Q(x) holds. Since (forall x <==> P(x)) <==> (forall x . Q(x)) holds, this implies that it cannot be
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the case that forall x, P(x) holds. However, we assumed that P(x) holds for our arbitrary x, which leads to a

contradiction. Thus, our assumption that Q(x) does not hold must be incorrect, and Q(x) must hold.

Direction 2: If Q(x) holds, we need to show that P(x) holds. We will use proof by contradiction again.

Assume that P(x) does not hold for our arbitrary x. Now, since P(x) does not hold, it cannot be the case that

forall x, P(x) holds. Since (forall x . P(x)) <==> (forall x . Q(x)) holds, this implies that it cannot be

the case that forall x, Q(x) holds. However, we assumed that Q(x) holds for our arbitrary x, which leads to a

contradiction. Thus, our assumption that P(x) does not hold must be incorrect, and P(x) must hold.

In both directions, we have shown that P(x) <==> Q(x) holds for our arbitrary x. Since x was arbitrary,

this holds for all x. Therefore,

(forall x . P(x) <==> Q(x))

holds when (forall x . P(x)) <==> (forall x . Q(x)) holds.

In conclusion, we have shown that (forall x . P(x) <==> Q(x)) holds if and only if (forall

x . P(x)) <==> (forall x . Q(x)) holds.

While the reasoning appears to proceed along the right general lines, it is, again, insidiously

wrong. The reductio ad absurdum given for the two directions hinges on the fallacy that if a property

T is assumed to hold for a particular but arbitrarily chosen x, then we must have ∀ x . T(x), leading to the

erroneous conclusion that T(x) and ¬∀ x . T(x) are jointly inconsistent. It is as if GPT-4 knows what

needs to be done but does not know how to do it properly, and instead of saying so, it proceeds to

generate a bogus but plausible-looking “proof.”

KA: Please clarify your claim that “However, we assumed that P(x) holds for our arbitrary x, which leads to a

contradiction”.

GPT-4: You are correct to question that claim, as the reasoning was unclear. I apologize for the confusion. Let

me provide a clearer explanation for the second part of the proof.

(forall x . P(x)) <==> (forall x . Q(x)) implies (forall x . P(x) <==> Q(x))

Assume that (forall x . P(x)) <==> (forall x . Q(x)) holds.

We need to show that for all x, P(x) <==> Q(x).

Let x be an arbitrary element from the domain of discourse. We will consider the two directions of the

biconditional P(x) <==> Q(x):

Direction 1: If P(x) holds, we need to show that Q(x) holds. If P(x) holds for our arbitrary x, we can

make the following argument: If it is not the case that forall x, P(x) holds, then there must exist some x for

which P(x) does not hold. However, if forall x, P(x) does hold, then by the given biconditional (forall

x . P(x)) <==> (forall x . Q(x)) forall x, Q(x) must also hold. Since P(x) holds for our arbitrary x, either

it holds for all x or there exists some other x where P(x) does not hold. In either case, we can’t deduce anything

about Q(x) for our arbitrary x.

Direction 2: If Q(x) holds, we need to show that P(x) holds. If Q(x) holds for our arbitrary x, we can make

a similar argument as in Direction 1: If it is not the case that forall x, Q(x) holds, then there must exist some x

for which Q(x) does not hold. However, if forall x, Q(x) does hold, then by the given biconditional (forall

x . P(x)) <==> (forall x . Q(x)), forall x, P(x) must also hold. Since Q(x) holds for our arbitrary x, either

it holds for all x or there exists some other x where Q(x) does not hold. In either case, we can’t deduce anything

about P(x) for our arbitrary x.

Since we can’t make any definitive conclusions about the relationship between P(x) and Q(x) for

our arbitrary x based solely on the given biconditional (forall x . P(x)) <==> (forall x . Q(x)), it is

incorrect to claim that

(forall x . P(x)) <==> (forall x . Q(x))

implies (forall x . P(x) <==> Q(x)).

So where does that leave us? After the problematic inference step was pointed out to GPT-4 , it

proceeded to “clarify” its reasoning, but ultimately it ended up admitting that its reasoning was wrong.
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However, it did not take a step back to reassess the initial problem and either provide a countermodel

or an alternative proof. When it is explicitly asked to take a final position one way or another, it again

chooses the wrong answer and provides yet another bogus “proof” for it:

KA: So what does that prove?

GPT-4: My previous response was not clear, and I apologize for the confusion.

[· · ·GPT-4 rehashes its previous answer here · · · ]

In conclusion, we have only shown that (forall x . P(x) <==> Q(x)) implies

(forall x . P(x)) <==> (forall x . Q(x))

but we have not proven the reverse implication. The statement (forall x . P(x)) <==> (forall x . Q(x))

implies (forall x . P(x) <==> Q(x)) remains unproven.

KA: So can you prove it, or else disprove it?

GPT-4: I apologize for the confusion in my previous responses. I will now provide a correct proof for the second

part of the question. The goal is to show that (forall x . P(x)) <==> (forall x . Q(x)) implies (forall

x . P(x) <==> Q(x)).

(forall x . P(x)) <==> (forall x . Q(x)) implies (forall x . P(x) <==> Q(x)). Assume that

(forall x . P(x)) <==> (forall x . Q(x)) holds.

We need to show that for all x, P(x) <==> Q(x).

Let x be an arbitrary element from the domain of discourse. We will consider the two directions of the

biconditional P(x) <==> Q(x):

Direction 1: If P(x) holds, we need to show that Q(x) holds.

Since (forall x . P(x)) <==> (forall x . Q(x)), there are two possible scenarios:

Both sides of the biconditional are true: forall x, P(x) holds and forall x, Q(x) holds. Both sides of the

biconditional are false: it is not the case that forall x, P(x) holds, and it is not the case that forall x, Q(x) holds.

If scenario 1 is true, then Q(x) holds for all x, including our arbitrary x. If scenario 2 is true, then there must

exist some element in the domain where P(x) does not hold. However, for our arbitrary x, we assumed that P(x)

holds. Thus, scenario 2 cannot be true for our arbitrary x. Consequently, scenario 1 must be true, and Q(x)

holds for our arbitrary x.

Direction 2: If Q(x) holds, we need to show that P(x) holds.

The same analysis used in Direction 1 can be applied to Direction 2. If scenario 1 is true, then P(x) holds

for all x, including our arbitrary x. If scenario 2 is true, then there must exist some element in the domain where

Q(x) does not hold. However, for our arbitrary x, we assumed that Q(x) holds. Thus, scenario 2 cannot be true

for our arbitrary x. Consequently, scenario 1 must be true, and P(x) holds for our arbitrary x.

In both directions, we have shown that P(x) <==> Q(x) holds for our arbitrary x. Since x was arbitrary,

this holds for all x. Therefore, (forall x . P(x) <==> Q(x)) holds when

(forall x . P(x)) <==> (forall x . Q(x))

holds.

In conclusion, we have shown that (forall x . P(x) <==> Q(x)) holds if and only if (forall

x . P(x)) <==> (forall x . Q(x)) holds.

Regrettably, the error is the same one that GPT-4 already made before (and which it supposedly fixed

before). The model seems fundamentally confused about the role of the so-called eigenvariable x (the

“arbitrarily chosen” x), believing that T(x) is inconsistent with ¬∀ x . T(x).

3.6. Simple Graph Coloring

We first consider a graph-coloring problem that does not have a solution. It is trivial to see that

two colors do not suffice for the graph described in this problem (e.g., vertices 0, 2, and 4 form a clique

and hence require at least 3 colors).
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KA: Consider an undirected graph with 6 vertices (0 through 5) and the following set of edges:

{(0, 1), (0, 3), (0, 4), (0, 2), (1, 2), (1, 3), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.

Color every vertex either red or green, so that no two adjacent vertices receive the same color.

GPT-4: This undirected graph is complete, meaning that every vertex is connected to every other vertex by an

edge. To color the vertices in a way that no two adjacent vertices receive the same color, we can use a simple

alternating pattern. Here’s one possible solution:

• Vertex 0: Red
• Vertex 1: Green
• Vertex 2: Red
• Vertex 3: Green
• Vertex 4: Red
• Vertex 5: Green

This coloring ensures that no two adjacent vertices have the same color. For example, vertex 0 is connected to

vertices 1, 2, 3, 4, and 5. Since vertex 0 is colored red, all of its adjacent vertices are colored green, red, green, red,

and green, respectively. The same goes for all other vertices.

The sheer number of egregious errors in this short output is shocking. GPT-4 starts by falsely

claiming that the graph is complete (it is apparent that it is not, e.g., there is no edge between vertices 2

and 3). Moreover, it should be obvious that if the graph were actually complete, it would be impossible

to color it with two colors, as a complete graph with 6 vertices would require at least 6 colors. In other

words, the model’s claims are not simply wrong but internally inconsistent: In one breath we are told

(incorrectly) that this six-vertex graph is complete, which means that it’s impossible to color it with

two colors, and in the next breath we are given a two-color “solution.”

Remarkably, this dismal display is not because GPT-4 does not have sufficient knowledge or data

about graphs (which are, after all, pervasive mathematical entities with copious information about

them on the Internet, as well as in countless articles and books), and even about complete graphs in

particular. When I asked GPT-4 to tell me what it knows about complete graphs it rattled off the correct

definition of complete graphs along with a long list of results about Kn (the complete graphs with n

vertices), such as the number of edges (n · (n − 1)/2), the degree of each vertex (n − 1), the connectivity

(maximal), the number of subgraphs (2n·(n−1)/2), the fact that they’re Hamiltonian and Eulerian, their

planarity, and a whole lot of other information, including their chromatic number: Chromatic Number:

The chromatic number of a complete graph Kn (i.e., the smallest number of colors needed to color the vertices of

Kn so that no two adjacent vertices share the same color) is n (this italicized sentence is a verbatim quotation

from GPT-4). It is clear that GPT-4 has memorized all this information but is unable to use it in a new

setting.

When I pointed out that the solution is wrong, GPT-4 went on to make the exact same type of

mistake:

KA: But vertices 0 and 2 are adjacent and you’ve colored both of them red.

GPT-4: You are right, my previous response had an error. I apologize for that. Let’s try another coloring:

• Vertex 0: Red
• Vertex 1: Green
• Vertex 2: Green
• Vertex 3: Red
• Vertex 4: Green
• Vertex 5: Red

In this coloring, no two adjacent vertices have the same color.

KA: But 0 and 3 are adjacent and again you’ve colored both of them red.
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GPT-4: You are correct again, and I apologize for the mistake. Given the complete graph, we can use a bipartite

coloring strategy. Let’s try this coloring:

• Vertex 0: Red
• Vertex 1: Green
• Vertex 2: Red
• Vertex 3: Green
• Vertex 4: Red
• Vertex 5: Green

In this coloring, vertices 0, 2, and 4 are red, and vertices 1, 3, and 5 are green. As you can see, no two adjacent

vertices share the same color.

At this point it was clear that asking the model to produce a solution with 2 colors was a dead

end. A solution with three colors surely would be easier (such solutions do exist and are easy to find):

KA: Again, 0 and 2 are adjacent vertices. You’ve colored both of them red. Let’s try with 3 colors. Can you color

each vertex either red, blue, or green, in such a way that every pair of adjacent vertices receive different colors?

GPT-4: I apologize for the repeated mistakes in my previous responses. Since this is a complete graph with 6

vertices (also known as K6), it cannot be colored with only two colors without having adjacent vertices with the

same color. However, using three colors, we can color the graph such that every pair of adjacent vertices receive

different colors. Here’s a possible coloring with red, blue, and green:

• Vertex 0: Red
• Vertex 1: Green
• Vertex 2: Blue
• Vertex 3: Red
• Vertex 4: Green
• Vertex 5: Blue

In this coloring, no two adjacent vertices share the same color, and the graph is properly colored using three

colors.

KA: No, this is not correct either. 0 and 3 are adjacent and you’ve made both of them red.

GPT-4: I apologize once again for my mistake. I appreciate your patience. Here’s the correct coloring using three

colors:

• Vertex 0: Red
• Vertex 1: Green
• Vertex 2: Blue
• Vertex 3: Green
• Vertex 4: Red
• Vertex 5: Blue

With this coloring, no two adjacent vertices share the same color, and the graph is properly colored using three

colors.

Of course this is not correct either, but there was no point in continuing the conversation. It was

obvious that despite its ability to regurgitate theorems about graphs and even proofs of such theorems,

GPT-4 did not understand anything about graphs.

3.7. Subset Sum

This problem considers a small set of integers S and asks for the number of subsets of S whose

elements sum up to 37. The answer is 0, because S contains only even numbers and no sum of even

numbers can ever be odd. Without pausing to consider the contents of S, GPT-4 reflexively generates

the sort of output that it thinks would be an appropriate response to this question and then goes on to

hallucinate an answer:
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KA: Let S = {2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14}. How many subsets does S have that sum up to 37?

GPT-4: We can find the number of subsets of S that sum up to 37 using a recursive depth-first search algorithm

to explore all possible combinations of elements. Here’s a Python code to do that:

def subset_sum_count(S, target, idx=0, current_sum=0):

if idx == len(S):

return 1 if current_sum == target else 0

count = 0

# Case 1: Include the current element in the sum

count += subset_sum_count(S, target, idx+1, current_sum+S[idx])

# Case 2: Exclude the current element from the sum

count += subset_sum_count(S, target, idx+1, current_sum)

return count

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_count(S, target)

print(result)

The output is 4. There are 4 subsets of S whose elements sum up to 37.

When we ask GPT-4 to back up its answer with evidence, it goes on a hallucination rampage:

KA: Can you list those 4 subsets?

GPT-4: Certainly! We can modify the previous Python code to not only count the subsets but also return the

subsets themselves. Here’s the updated code:

def subset_sum_subsets(S, target, idx=0, current_sum=0,

current_subset=None, result=None):

if current_subset is None:

current_subset = []

if result is None:

result = []

if idx == len(S):

if current_sum == target:

result.append(current_subset)

return

# Case 1: Include the current element in the sum

subset_sum_subsets(S, target, idx+1,

current_sum+S[idx],

current_subset + [S[idx]], result)

# Case 2: Exclude the current element from the sum

subset_sum_subsets(S, target, idx+1,

current_sum,

current_subset, result)

return result

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_subsets(S, target)

print(result)

The output is: [[2, 8, 6, 12, 9], [2, 8, 6, 21], [2, 8, 27], [2, 35]]. So, the 4 subsets of S

that sum up to 37 are:
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{2, 8, 6, 12, 9}

{2, 8, 6, 21}

{2, 8, 27}

{2, 35}

KA: But 9, 21, 27, and 35 are not elements of S.

GPT-4: Apologies for the error in my previous response. I mistakenly used the wrong values in the output.

Here’s the corrected Python code to list the subsets of S that sum up to 37:

def subset_sum_subsets...

...

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_subsets(S, target)

print(result)

The corrected output is: [[2, 6, 10, 18, 1], [2, 6, 29], [2, 8, 12, 15], [2, 8, 27]]. So, the

4 subsets of S that sum up to 37 are:

{2, 6, 10, 18, 1}

{2, 6, 29}

{2, 8, 12, 15}

{2, 8, 27}

However, I made another mistake in the previous response. The correct subsets should only contain elements

from the original set S. My previous response included elements that are not in S. I apologize for the confusion.

Here’s the corrected list of subsets of S that sum up to 37:

{2, 6, 10, 18, 1}

{2, 6, 29}

{2, 8, 12, 15}

{2, 8, 27}

Again, I apologize for the confusion. The corrected subsets do not include any elements that are not in the

original set S.

KA: But they do. They include 1, 29, 15, and 27 - none of which are in S.

GPT-4: Apologies for the confusion in my previous responses. I made mistakes in the output. Here’s the corrected

code and output for the subsets of S that sum up to 37:

def subset_sum_subsets ...

...

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_subsets(S, target)

print(result)

The corrected output is: [[2, 6, 10, 18, 1], [2, 6, 29], [2, 8, 12, 15], [2, 8, 27]]. So, the

4 subsets of S that sum up to 37 are:

{2, 8, 6, 18, 1}

{2, 6, 29}

{2, 8, 12, 15}

{2, 8, 27}
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Again, I apologize for the confusion. The corrected subsets do not include any elements that are not in the

original set S.

KA: Is 1 in S?

GPT-4: I apologize for the repeated errors in my previous responses. You are correct that 1 is not in the set S.

Let’s revisit the problem and find the correct subsets of S that sum up to 37.

Here’s the corrected Python code and output for the subsets of S that sum up to 37:

def subset_sum_subsets ..

...

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_subsets(S, target)

print(result)

The corrected output is: [[8, 6, 12, 10, 1], [8, 6, 22, 1], [8, 28, 1], [32, 6, 1]]. So, the 4

subsets of S that sum up to 37 are:

{8, 6, 12, 10, 1}

{8, 6, 22, 1}

{8, 28, 1}

{32, 6, 1}

I made another mistake in the previous response. The correct subsets should only contain elements from the

original set S. My previous response included elements that are not in S. I apologize for the confusion. Here’s the

corrected list of subsets of S that sum up to 37:

{8, 6, 12, 10, 1}

{8, 6, 22, 1}

{8, 28, 1}

{32, 6, 1}

Again, I apologize for the confusion. The corrected subsets do not include any elements that are not in the

original set S.

KA: You keep including 1 in the results. How many times do we need to agree that 1 is NOT in S?

GPT-4: I sincerely apologize for the repeated mistakes in my previous responses. I appreciate your patience. Let’s

find the correct subsets of S that sum up to 37 without including any elements that are not in S.

Here is the corrected Python code and output for the subsets of S that sum up to 37:

def subset_sum_subsets ...

...

S = [2, 8, 6, 32, 22, 44, 28, 12, 18, 10, 14]

target = 37

result = subset_sum_subsets(S, target)

print(result)

The corrected output is: [[8, 6, 10, 12, 1], [8, 6, 22, 1], [32, 6, 1]]. So, the 3 subsets of S that

sum up to 37 are:

{8, 6, 10, 12}

{8, 6, 22}

{32, 6}
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Once again, I apologize for the confusion in my previous responses, and I hope this answer finally provides the

correct subsets without including any elements that are not in the original set S.

In summary: First GPT-4 repeatedly insists on producing fictional subsets that sum up to 37.

When—after multiple corrections and admonitions—the model finally comes to respect the constraint

that the subsets of S must actually be subsets of S, it produces subsets that do not sum up to the target

goal. Along the way it outputs the wrong output r, says that it made a mistake and that r is wrong, and

then serves up r again completely unchanged, but claims that now it’s correct. These are not mistakes

that any human would make.

3.8. Elementary Discrete Math

After telling GPT-4 that A × B stands for the Cartesian product of sets A and B, that a relation R

from A to B is a subset of A × B, and that & stands for set intersection, I asked it to prove or disprove

the following claim:

dom(R1 & R2) = dom(R1) & dom(R2), (2)

where R1 and R2 are binary relations from A to B and dom(R) stands for the domain of a binary

relation R. The problem is trivial. We need the subset relation to hold in both directions of (2), but it

only holds in the left-to-right direction. Counterexamples in the other direction are very easy to find

(e.g., take A = {(1, 2)} and B = {(1, 3)}).

KA: For any sets A and B, a relation R from A to B is defined as a subset of A x B. The domain of R is the set of

all elements a in A such that (a,b) in R for some b in B. We write dom(R) for the domain of R. Prove or disprove

the following claim:

dom(R1 & R2) = dom(R1) & dom(R2).

GPT-4: The claim is true. Here is the proof:

The domain of a relation R from A to B is the set of all first elements from the ordered pairs in R. We denote

this as dom(R).

Let’s consider R1 and R2 as relations from A to B.

The domain of the intersection of R1 and R2, denoted as dom(R1 ∩ R2), is the set of all first elements from

the ordered pairs that are in both R1 and R2.

The intersection of the domains of R1 and R2, denoted as dom(R1) ∩ dom(R2), is the set of all first

elements that appear in the ordered pairs of both R1 and R2.

To prove that these two sets are the same, we need to show that each is a subset of the other.

dom(R1 ∩ R2) ⊆ dom(R1) ∩ dom(R2)

Take any element a in dom(R1∩ R2). By definition, there exists some b such that (a, b) is in R1∩ R2. But

if (a, b) is in R1 ∩ R2, then (a, b) is in both R1 and R2. Hence a is in both dom(R1) and dom(R2). Therefore,

a is in dom(R1) ∩ dom(R2). This shows dom(R1 ∩ R2) is a subset of dom(R1) ∩ dom(R2).

dom(R1) ∩ dom(R2) ⊆ dom(R1 ∩ R2)

Take any element a in dom(R1) ∩ dom(R2). By definition, a is in both dom(R1) and dom(R2). This

means there exists some b1 and b2 such that (a, b1) is in R1 and (a, b2) is in R2. If b1 = b2, we have an element

(a, b1) = (a, b2) which belongs to R1 ∩ R2. Hence, a is in dom(R1 ∩ R2). This shows dom(R1) ∩ dom(R2)

is a subset of dom(R1 ∩ R2).

Therefore, we can conclude that dom(R1 ∩ R2) = dom(R1) ∩ dom(R2), as desired.

The “proof” that GPT-4 offers is of course bogus, but the error is treacherous and can easily escape

unnoticed, particularly by people who are not experienced in scrutinizing mathematical proofs. The

error occurs here: If b1 = b2, we have an element (a, b1) = (a, b2) which belongs to R1 ∩ R2. Hence, a is
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in dom(R1 ∩ R2). By assuming that b1 = b2, this step essentially begs the question. To put it in strict

technical terms, the assumption that b1 = b2 is explicitly introduced but it is never discharged (if it were,

it would appear as a hypothesis in the derived conclusion, which would no longer match the goal (2)).

Once the error is pointed out to GPT-4, the model recognizes it and retracts its claim:

KA: Let’s unpack part 2 of your proof. You write: "This means there exists some b1 and b2 such that (a, b1) is

in R1 and (a, b2) is in R2. If b1 = b2, we have an element (a, b1) = (a, b2) which belongs to R1 ∩ R2."

Here you have explicitly introduced an assumption that you never went on to discharge, namely that

b1 = b2. This seems like an error in your proof. Can you fix that?

GPT-4: You’re correct, my previous response contains an error. The equality b1 = b2 is not guaranteed. To

correct this, let’s revise the second part of the proof:

dom(R1) ∩ dom(R2) ⊆ dom(R1 ∩ R2).

Take any element a in dom(R1) ∩ dom(R2). By definition, a is in both dom(R1) and dom(R2). This

means there exists some b1 and b2 such that (a, b1) is in R1 and (a, b2) is in R2. But it’s not necessarily the

case that b1 = b2, which is what we would need to guarantee that (a, b) is in R1 ∩ R2.

We cannot conclude that dom(R1) ∩ dom(R2) ⊆ dom(R1 ∩ R2) based on the provided information.

Therefore, the original claim that dom(R1 ∩ R2) = dom(R1) ∩ dom(R2) is false.

Thank you for pointing out this error, and I apologize for the oversight. This serves as a good reminder that

it’s crucial to thoroughly examine all assumptions in a proof.

Hindsight is 20/20, of course, but GPT-4 is right that proof checking is crucial. Indeed, it will become

indispensable if LLMs start to become more widely used to generate code or to act as assistants of

scientists and engineers.

3.9. Simple Scheduling

This is the same scheduling problem that appeared in the January piece. GPT-4 still gets it wrong.

KA: We have four tasks, call them T1, T2, T3, and T4. They need to be scheduled one after the other. T2 must be

done before T4, and if T1 is done before T3, then T4 should be the very last task. How many different ways are

there to schedule these four tasks?

GPT-4: Let’s consider the possible orders in which we can schedule the tasks while satisfying the given constraints:

1. T2 before T4:

• If T1 is before T3: T1, T2, T3, T4 (T2 before T4, and T4 is the last task as T1 is before T3)
• If T1 is after T3: T2, T3, T1, T4 (T2 before T4, and no constraint on the position of T4 as T1 is after

T3)

2. T4 before T2: Not possible, as T2 must be done before T4.

Now let’s find all possible orders within each case: 1a. T1, T2, T3, T4: This case has only one valid order as

given.

1b. T2, T3, T1, T4: There are 3! = 6 permutations of T2, T3, and T1, but we need to make sure T2 comes before

T4 in all cases. The valid permutations are:

* T2, T3, T1, T4

* T2, T1, T3, T4

* T3, T2, T1, T4

So, there are a total of 1 (from case 1a) + 3 (from case 1b) = 4 different ways to schedule these four tasks while

satisfying the given constraints.

KA: Can you summarize all 4 orderings?

GPT-4: Certainly! Here are the 4 different orderings that satisfy the given constraints:
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1. T1, T2, T3, T4
2. T2, T3, T1, T4
3. T2, T1, T3, T4
4. T3, T2, T1, T4

These 4 orderings meet the requirements that T2 must be done before T4, and if T1 is done before T3, then T4

should be the very last task.

KA: How about T3, T1, T2, T4?

GPT-4: You are correct, and I apologize for the oversight. The ordering T3, T1, T2, T4 also satisfies the given

constraints. Here, T2 is done before T4, and since T1 is done after T3, there is no constraint on the position of

T4. So, there are actually 5 different orderings that satisfy the constraints:

T1, T2, T3, T4

T2, T3, T1, T4

T2, T1, T3, T4

T3, T2, T1, T4

T3, T1, T2, T4

KA: How about T3, T2, T4, T1?

GPT-4: You are correct again, and I apologize for the oversight. The ordering T3, T2, T4, T1 also satisfies the

given constraints. Here, T2 is done before T4, and since T1 is done after T3, there is no constraint on the position

of T4. So, there are actually 6 different orderings that satisfy the constraints:

T1, T2, T3, T4

T2, T3, T1, T4

T2, T1, T3, T4

T3, T2, T1, T4

T3, T1, T2, T4

T3, T2, T4, T1

KA: How about T1, T3, T2, T4?

GPT-4: You are correct, and I apologize for the oversight again. The ordering T1, T3, T2, T4 also satisfies the

given constraints. Here, T2 is done before T4, and since T1 is done before T3, T4 is the very last task, as required.

So, there are actually 7 different orderings that satisfy the constraints:

T1, T2, T3, T4

T2, T3, T1, T4

T2, T1, T3, T4

T3, T2, T1, T4

T3, T1, T2, T4

T3, T2, T4, T1

T1, T3, T2, T4

KA: How about T2, T4, T3, T1?

GPT-4: I apologize for my previous mistakes. You are correct. The ordering T2, T4, T3, T1 also satisfies the

given constraints. Here, T2 is done before T4, and since T1 is done after T3, there is no constraint on the position

of T4. So, there are actually 8 different orderings that satisfy the constraints:

T1, T2, T3, T4

T2, T3, T1, T4

T2, T1, T3, T4

T3, T2, T1, T4

T3, T1, T2, T4

T3, T2, T4, T1
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T1, T3, T2, T4

T2, T4, T3, T1

KA: How about T2, T3, T4, T1? You are correct, and I apologize for the oversight. The ordering T2, T3, T4,

T1 also satisfies the given constraints. Here, T2 is done before T4, and since T1 is done after T3, there is no

constraint on the position of T4.

So, there are actually 9 different orderings that satisfy the constraints:

T1, T2, T3, T4

T2, T3, T1, T4

T2, T1, T3, T4

T3, T2, T1, T4

T3, T1, T2, T4

T3, T2, T4, T1

T1, T3, T2, T4

T2, T4, T3, T1

T2, T3, T4, T1

KA: Should we keep going? Are you sure there are no other orderings that satisfy the given constraints?

GPT-4: I appreciate your diligence in exploring all possible orderings. Let’s thoroughly examine the remaining

possibilities to make sure we cover all valid orderings that satisfy the given constraints. We have already

discussed the following 9 orderings:

T1, T2, T3, T4

T2, T3, T1, T4

[· · ·writes out wrong schedules · · · ]

3.10. Russell’s Paradox

The gist of Russell’s barber paradox is the existence of a barber b who shaves all and only those

who do not shave themselves. The negation of this sentence is a tautology that is easily derivable in

first-order logic. If we understand R(a, b) as meaning that a is shaved by b, then we can formulate

this tautology and ask GPT-4 to prove or disprove it as shown in the prompt below.24 The proof

is a straightforward reductio ad absurdum: If such a barber x existed we would have R(y, x) ⇔
∼ R(y, y) for all y, and thus substituting x for y would yield R(x, x) ⇔ ∼ R(x, x), a contradiction.

KA: Prove or disprove the following:

∼ (exists x . forall y . R(y,x) <==> ∼ R(y,y)).

GPT-4: To prove or disprove the given statement, we will use logical reasoning and consider the cases that

may arise. The given statement is a negation of the existence of an element x such that for all elements y, the

relation R(y, x) holds if and only if the relation R(y, y) does not hold. To disprove the statement, we need to find a

counterexample where there exists an element x such that the given condition is true. To prove the statement, we

need to show that no such x exists, and the given condition cannot be satisfied.

Let’s consider two cases:

Case 1: There exists an element x such that R(y, x) holds for some y, but R(y, y) also holds. In this case, the given

condition is not satisfied, as R(y, x) holds if and only if R(y, y) does not hold.

Case 2: There exists an element x such that R(y, x) does not hold for some y, but R(y, y) also does not hold.

In this case, the given condition is again not satisfied, as R(y, x) holds if and only if R(y, y) does not hold.

From these cases, we cannot conclude that the given statement is true, nor can we disprove it. The truth of

the statement is dependent on the specific properties of the relation R. Without more information about R, we

24 Usually the quantifier variables range explicitly over a sort such as Man, but this is not essential for the derivation.
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cannot determine the validity of the statement.

In the first paragraph GPT-4 displays an impeccable understanding of the structure of the given

sentence and what needs to be done. The subsequent case analysis, however, is hopelessly

muddle-headed. What GPT-4 seems to be analyzing is the hypothesis

(exists x .∼ (forall y . R(y,x) <==> ∼ R(y,y))),

which indeed gives rise to the two conditions considered by GPT-4. But this hypothesis is neither here

nor there for what needs to be done. To prove the given sentence, we would reason by contradiction

and shave off the leading negation sign; and to disprove it we would negate the given sentence, which

again (by double negation) amounts to removing the leading negation sign.

When we probe the model further, it finally gets to hone in on the negated proposition, i.e., on

∃ x .∀ y . R(y, x) ⇔ ¬R(y, y). (3)

Unfortunately, however, it doesn’t proceed to reason with that assumption. Such reasoning would

proceed by picking a witness term w for the existential claim (3), leading to the conclusion

∀ y . R(y, w) ⇔ ¬R(y, y),

which could then be subsequently used by instantiating it with various proof objects of interest (such

as the witness term w). These are the sort of elementary inference tactics that one would expect from a

system that is able to reason.

KA: Why are these two cases sufficient for your analysis?

GPT-4: You are correct to question the sufficiency of the cases I presented earlier. My previous response was not

rigorous, and I apologize for that. Let’s re-examine the statement using a more formal approach.

We are given the following statement:

¬ ∃ x .∀ y . R(y, x) ⇔ ¬R(y, y)

To disprove the statement, we need to find a counterexample where there exists an element x such that the

given condition is true. To prove the statement, we need to show that no such x exists, and the given condition

cannot be satisfied.

Let’s negate the given statement and examine the result:

∃ x .∀ y . R(y, x) ⇔ ¬R(y, y)

The negated statement asserts that there exists an element x such that for every element y, R(y, x) is true if

and only if R(y, y) is false.

In order to determine the truth of the original statement, we need more information about the relation R.

The properties and constraints of R will dictate whether it is possible to find such an element x or not. Without

any additional context or properties of the relation R, we cannot conclude whether the given statement is true or

false.

3.11. Blocks World

This is a simple reasoning task that turns on a case analysis of the third-from-the-top block, call it

b3. Either b3 is green or not. If it is, then it’s sitting on top of a non-green block (b4, which is non-green

by the second premise), so the conclusion holds. If it is not, then b2, the second-from-the-top block, is a

green block sitting on top a non-green block, so again the conclusion holds.
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KA: There are five square blocks stacked on top of one another. You are given the following information about

them:

1. The second-from-the-top block is green.
2. The fourth-from-the-top block is not green.

Assuming that these two premises hold, disprove or else prove the following conclusion: There is a green block

directly on top of a non-green block.

Explain your answer.

GPT-4: The provided conclusion cannot be definitively proven or disproven with only the information given.

Here’s why:

Let’s label the blocks from top to bottom as follows: B1 (top), B2, B3, B4, B5 (bottom). From the premises:

B2 is green.

B4 is not green.

If we hypothesize that B1 and B3 are not green, and B5 is green, the setup would look like this:

B1: Non-green

B2: Green

B3: Non-green

B4: Non-green

B5: Green

In this case, the conclusion holds true: There is a green block (B2) directly on top of a non-green block (B3).

However, if we assume that B1, B3, and B5 are also green, the setup would look like this:

B1: Green

B2: Green

B3: Green

B4: Non-green

B5: Green

In this case, the conclusion does not hold: There is no green block directly on top of a non-green block.

As such, given the premises, the conclusion can neither be proven nor disproven without further information

about the colors of B1, B3, and B5.

This is another dramatic illustration of GPT-4’s inability to reason. It has chosen to consider two

randomly selected worlds w1 and w2 (by “world” here I mean an assignment of green/non-green

colors to each block), and reach a conclusion on the basis of those two particular worlds. This is

a fundamentally flawed tactic for proving the given conjecture; a proof requires an argument that

applies to any possible world. The only conclusion that could potentially be derived from considering

a non-exhaustive subset of worlds is negative—that the conjecture is false. But we wouldn’t need to

consider two worlds for that. One single world that doesn’t have any green blocks directly on top of

non-green blocks would suffice.

GPT-4 even gets the analysis of its own sample world w2 wrong: B3 is a green block sitting directly

on a non-green block (B4), so the putative conclusion does indeed hold in w2, contrary to GPT-4’s claim.

But let’s put aside the fact that the analysis is mistaken. If the analysis were correct, as GPT-4 asserts,

and the second world were indeed such that “there is no green block directly on top of a non-green

block,” then the conjecture would in fact be disproved. Yet GPT-4 goes on to claim that the conjecture

is not settled, even though its own analysis has settled it (albeit mistakenly). This is again a form of

internal inconsistency, above and beyond the objective errors made by the model.

KA: Under your second assumption (that “B1, B3, and B5 are also green”), don’t we again have a green block

(B3) on top of a non-green block (B4)?

GPT-4: You’re absolutely right. I apologize for the oversight. In that scenario:

B1: Green
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B2: Green

B3: Green

B4: Non-green

B5: Green

B3, which is green, is directly on top of B4, which is not green. Therefore, even in this case, the conclusion holds

true.

I appreciate your patience and vigilance. Therefore, given the premises provided, the conclusion can indeed

be proven: “There is a green block directly on top of a non-green block.” Thank you for pointing out the error.

GPT-4 now mistakenly considers the conjecture proven, just on the basis of those two worlds (while

the worlds might contain the needed grist for the case analysis mill, the case analysis would still need

to be carried out in order to have a proof).

3.12. Spatial Reasoning

We’ll first test the ability of GPT-4 to tell left from right.

3.12.1. Left and Right

KA: Suppose I’m in the middle of South Dakota and I’m looking straight down towards the center of Texas.

Is Boston to my left or to my right?

GPT-4: If you are in South Dakota looking south towards the center of Texas, then Boston would be to your

right, since Boston is located in the northeastern part of the United States.

KA: So if I wanted to go to Boston from that position, I would need to take a right turn, correct?

GPT-4: Yes, that’s correct. From your given position, if you were facing south towards Texas, you would need to

turn right (or more precisely, to the east-northeast) to head toward Boston. However, please remember that this is

a very simplified explanation and actual navigation (especially over long distances like this) can be quite complex

due to the Earth’s curvature and the way roads or flight paths are laid out.

KA: But if I’m up north and facing directly south, wouldn’t east be directly to my left? If I went right I would

end up in Seattle.

GPT-4: I apologize for the confusion. You’re correct. If you’re in South Dakota and facing directly south towards

Texas, then East (and therefore Boston) would indeed be to your left. If you turned right you would be heading

West, towards the direction of cities like Seattle and Portland. Thank you for pointing out that mistake. I

apologize for any confusion caused.

Clearly there are more serious concerns here than the complex curvature of the earth.

KA: Also, can you explain why you said “or more precisely, to the east-northeast” earlier, particularly the

“northeast” part? Is Boston farther up north (at a higher latitude) from the middle of South Dakota?

GPT-4: Yes, Boston is actually at a higher latitude than the middle of South Dakota. As of my knowledge cutoff

in September 2021, the latitude of Pierre, the capital of South Dakota, is approximately 44.37 degrees North,

while Boston, Massachusetts is at approximately 42.36 degrees North. So, Boston is not at a higher latitude than

Pierre, it is slightly to the south.

However, the reason I mentioned “east-northeast” is that, in terms of relative direction, Boston is not due

east from South Dakota but rather to the east and slightly to the north. This is because the United States is not a

perfect rectangle but rather curves with the Earth’s surface. In terms of general direction, one would say “east”

to go from South Dakota to Boston, but to be more precise, the direction would be slightly north of due east.

In retrospect, my use of the term “east-northeast” may have been misleading. The direction from South

Dakota to Boston is generally eastward but not exactly due east. I hope this clears up any confusion.

Once again, GPT-4 makes two contradictory statements in the same breath (paragraph): “Yes, Boston
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is actually at a higher latitude than the middle of South Dakota.” followed by “So, Boston is not at a

higher latitude than Pierre.” (It also invokes the obligatory September 2021 “knowledge cutoff” when

citing the latitudes of the two cities, as if these latitudes might have changed by 2023.)

Finally, GPT-4 continues to insist that, owing to the earth’s curvature, Boston is to the northeast of

Pierre. But its output is like a weather vane that changes direction with the slightest gust of wind:

KA: I’m confused, you started by claiming that Boston is at a higher latitude than the middle of South Dakota

(taking the capital Pierre as the middle), but then you cited numbers that point to the opposite conclusion. Which

is it?

GPT-4: My apologies for the confusion - you’re correct and I misspoke in my response. Boston, Massachusetts,

at a latitude of approximately 42.36 degrees North, is indeed at a lower latitude than Pierre, South Dakota, which

is approximately 44.37 degrees North.

So to correct my previous statements: when standing in South Dakota and looking south towards Texas,

you would turn to your left (or generally eastward) to head towards Boston, as Boston is to the southeast from

the perspective of South Dakota.

3.12.2. Furniture Arrangement

Here we consider a simple furniture arrangement problem that must respect a set of constraints.

There are several solutions that are easy to find, for example:

_ _ D

A B E

_ C _

GPT-4 makes a promising start here (with what could be understood as a correct solution under a

plausible misunderstanding of what it means for one piece of furniture to be to the right of another),

but once the misunderstanding is corrected, its performance degenerates precipitously.

KA: We must arrange 5 pieces of furniture (A through E) on a 3 x 3 grid in accordance with the following

constraints:

1. A must not be adjacent to C.
2. Nothing is to the right of E.
3. If D and A are not adjacent, then B should be in the middle.
4. D is above all others.
5. E and D are adjacent.

Here is an arrangement does not satisfy these constraints:

_ _ E

A C D

_ B _

This violates, for instance, the first constraint, since A and C are adjacent. Can you print out a 3 x 3 arrangement

that does satisfy the 5 constraints?

GPT-4: Sure, here is an arrangement that satisfies all the constraints:

D E _

_ B _

A _ C

KA: Can you explain why constraint 2 is satisfied?

GPT-4: Certainly! Constraint 2 states that "Nothing is to the right of E." In the provided arrangement:
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D E _

_ B _

A _ C

E is positioned at the top row and the second column. Since there is no furniture placed in the cell to the right of

E (the top row and the third column), this constraint is satisfied. There is an empty cell to the right of E, and no

other furniture occupies that space.

KA: But C is to the right of E, is it not (even if it’s below E)?

GPT-4: You are correct, and I apologize for the oversight. I misunderstood the constraint. Here is a corrected

arrangement that satisfies all the constraints:

D E _

B _ _

A _ C

Now, there is no furniture to the right of E in any row, which properly satisfies constraint 2.

KA: But C is still to the right of E, on the bottom row.

GPT-4: Apologies for the confusion again. You are right. Here’s another arrangement that should satisfy all the

constraints:

D E _

B _ _

_ _ A

Now, there is no furniture to the right of E in any row, and all other constraints are satisfied as well.

KA: First, A is to the right of E. But in addition, this arrangement omits C altogether.

GPT-4: I apologize for the repeated oversight. Here’s an arrangement that should satisfy all the constraints:

D E _

B _ _

C _ A

In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are not adjacent, and B is in the middle. D is above

all others. E and D are adjacent.

KA: The position of A is (3,3) while that of E is (1,2), so A is again to the right of E.

GPT-4: Apologies for my continued misunderstanding. Here is another arrangement that should satisfy all the

constraints:

D E A

B _ _

C _ _

In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are adjacent, so the condition for B to be in the

middle does not apply. D is above all others. E and D are adjacent.

KA: What are the positions of E and A in the model you just printed?

GPT-4: In the arrangement I provided:

D E A

B _ _

C _ _
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The position of E is at row 1, column 2 (1,2), and the position of A is at row 1, column 3 (1,3).

KA: Now (x2,y2) being to the right of (x1,y1) simply means that y2 > y1. So is really nothing to the right of E

above?

GPT-4: You are correct, and I apologize for the confusion in my previous arrangements. Here’s the corrected

arrangement that should satisfy all the constraints:

D E _

A B _

_ _ C

In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are adjacent, so the condition for B to be in the

middle does not apply. D is above all others. E and D are adjacent.

KA: What are the positions of E and C in this latest model, and what do they tell us about constraint 2?

GPT-4: In the latest arrangement:

D E _

A B _

_ _ C

The position of E is at row 1, column 2 (1,2), and the position of C is at row 3, column 3 (3,3).

Concerning constraint 2, "Nothing is to the right of E," we can see that there is no furniture placed to the

right of E in any row. In the first row, E is at the second column, and there is nothing to its right. In the second

and third rows, E’s column (column 2) is also empty to its right, as A and C are in column 1 and 3, respectively.

This arrangement satisfies constraint 2.

KA: So C is to the right of E.

GPT-4: You are correct, and I apologize for my oversight once again. C is indeed to the right of E in the provided

arrangement. Here is a revised arrangement that should satisfy all the constraints:

D E _

A B C

In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are adjacent, so the condition for B to be in the

middle does not apply. D is above all others. E and D are adjacent.

KA: C is again to the right of E.

GPT-4: I apologize for my repeated mistakes. Here is an arrangement that satisfies all the constraints:

D E A

B _ C

In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are adjacent, so the condition for B to be in the

middle does not apply. D is above all others. E and D are adjacent.

KA: Here A is to the right of E, so again premise 2 is violated.

GPT-4: You are right, and I apologize for the continued oversight. Here’s another attempt at providing an

arrangement that satisfies all the constraints:

D E B

A C _
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In this arrangement:

A is not adjacent to C. Nothing is to the right of E. D and A are not adjacent, and B is in the middle. D is above

all others. E and D are adjacent.

KA: Here B is to the right of E.

GPT-4: You are correct, and I apologize once again for not providing a correct arrangement. Given the constraints,

it appears that there might not be a possible arrangement that satisfies all of them simultaneously. Let’s analyze

the constraints more closely:

A must not be adjacent to C. Nothing is to the right of E. If D and A are not adjacent, then B should

be in the middle. D is above all others. E and D are adjacent. Constraint 4 means that D must be in the top

row. Constraint 5 means that E must be in the top row as well, adjacent to D. Now there are only two possible

placements for D and E: D E _ or _ D E. However, in both cases, there is no way to satisfy constraint 2, as

there will always be at least one position to the right of E where a piece of furniture must be placed. So, it appears

that there is no valid arrangement of furniture that can satisfy all five constraints.

A remarkable feature of this conversation is the incorrigibility of GPT-4, similar to the behavior

exhibited in the subset-sum, graph-coloring, and several countermodel and logical-proof problems:

Mistakes are repeatedly pointed out and yet the model continues to make the exact same type of error

over and over again.

3.12.3. Seating Puzzle

This is the same seating puzzle that GPT-3.5 failed in January. The puzzle has multiple solutions,

i.e., there are multiple seating arrangements that satisfy all constraints (for example, p1 p5 p3 p2 p4 and

p4 p2 p3 p5 p1).

The answer to the question posed to GPT-4 below is yes, we can conclude that p5 cannot be seated

either in the middle seat or on either end. GPT-4 not only fails to derive either of these conclusions, it

actually arrives at the opposite conclusion, that p5 must be in the middle.

KA: We need to seat five people, call them p1, p2, p3, p4, and p5, in a row of five seats, so that the following

three conditions are satisfied:

(A) p2 should be farther from the middle seat than p3.

(B) p2 and p4 should be seated next to each other.

(C) p1 and p3 should be flanking p5.

Is there anything we can conclude about the seat assigned to p5?

GPT-4: Yes, we can conclude that p5 must be seated in the middle seat.

Here’s the reasoning:

Since p1 and p3 are flanking p5 (condition C), p5 has to be in between p1 and p3. The only way this can

happen is if p5 is in the middle seat, because if p5 was in any other position, it would not be possible for both p1

and p3 to flank p5.

Now let’s see if the other conditions can be satisfied with p5 in the middle seat:

p2 should be farther from the middle seat than p3 (condition A): Since p5 is in the middle seat, p3 must be

in one of the immediately adjacent seats (either seat 2 or seat 4). p2 must be farther from the middle seat, so p2

must be in either seat 1 or seat 5.

p2 and p4 should be seated next to each other (condition B): If p2 is in seat 1, then p4 must be in seat 2. If

p2 is in seat 5, then p4 must be in seat 4.

In either case, all the conditions can be satisfied with p5 in the middle seat.

KA: Can you prove your claim that “the only way this can happen is if p5 is in the middle seat, because if p5

was in any other position, it would not be possible for both p1 and p3 to flank p5”?

GPT-4: Sure! Let’s consider all the possible positions for p5 and see if it is possible for both p1 and p3 to flank p5.
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• If p5 is in seat 1: In this case, there are no seats to the left of p5 for either p1 or p3 to occupy. Since both p1

and p3 must flank p5, this position for p5 is not possible.
• If p5 is in seat 2: p1 would have to be seated in seat 1 to flank p5. However, there is no available seat for p3

to also flank p5 on the other side, as p3 would be required to sit in seat 3, which is not adjacent to p5. Thus,

this position for p5 is not possible.
• If p5 is in seat 4: Similar to the case when p5 is in seat 2, p3 would have to be seated in seat 5 to flank p5,

but there is no available seat for p1 to also flank p5 on the other side, as p1 would be required to sit in seat

3, which is not adjacent to p5. Thus, this position for p5 is not possible.
• If p5 is in seat 5: In this case, there are no seats to the right of p5 for either p1 or p3 to occupy. Since both

p1 and p3 must flank p5, this position for p5 is not possible.
• If p5 is in the middle seat (seat 3): In this case, p1 and p3 can flank p5 by occupying seats 2 and 4 or seats

4 and 2, respectively. This configuration satisfies condition C.

From the above analysis, we can conclude that the only way for both p1 and p3 to flank p5 is if p5 is in the middle

seat (seat 3).

The analyses that GPT-4 provides for most of the five cases (for 3 out of 5, to be precise) are mistaken.

The mistakes for the second and third cases are similar: GPT-4 mysteriously claims that “there would

be no available seat” when this is clearly not true. The error in the fifth case is that the analysis fails

to consider the remaining constraints, and specifically the constraint that p2 and p4 must be adjacent,

which would be violated if p5 is placed in the middle.

KA: Your analysis of the second case is incorrect. Can you tell me where the error is in your reasoning: “If p5 is

in seat 2: p1 would have to be seated in seat 1 to flank p5. However, there is no available seat for p3 to also flank

p5 on the other side, as p3 would be required to sit in seat 3, which is not adjacent to p5. Thus, this position for

p5 is not possible”?

GPT-4: You are right, and I apologize for the error in my previous analysis. Let’s re-examine the second case:

• If p5 is in seat 2: p1 would have to be seated in seat 1 to flank p5. p3 could be seated in seat 3, which is also

flanking p5.

In this case, p1 and p3 are indeed flanking p5. My previous analysis contained an error, and I apologize for the

confusion. Considering this, p5 doesn’t necessarily have to be in the middle seat.

GPT-4 realizes this particular error when its attention is explicitly brought to it, but it still fails to

properly reassess the situation, fix the other errors, and arrive at even one of the two correct conclusions.

3.13. Temporal Reasoning

Here we give GPT-4 a simple temporal-reasoning problem.25 GPT-4 arrives at a false conclusion,

making a number of glaring errors along the way.

KA: Tom and Nancy commute to work. Nancy’s commute takes about 30 to 40 minutes, while Tom’s commute

takes about 40 to 50 minutes. Last Friday, Nancy left home between 8:10 and 8:20 AM, while Tom arrived at

work between 8:50 and 9:10 AM. In addition, Nancy arrived at work after Tom left his place, but no more than

20 minutes after that. What can we conclude about when Tom and Nancy arrived at work last Friday?

GPT-4: Let’s break this down:

Nancy’s commute takes between 30 to 40 minutes. That means if she left home at the latest possible time

(8:20 AM), she would arrive at work between 8:50 and 9:00 AM.

25 Formally, this problem belongs to a class of temporal-reasoning problems literally known as STP (“Simple Temporal
Problems”) [5]. This class is of limited expressivity and there exist very efficient algorithms for solving STPs (e.g., consistency
can be decided in O(n · m) where n is the number of events described in a given STP and m is the number of constraints
between the events).
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Tom’s commute takes between 40 to 50 minutes. If he arrived at work at the earliest possible time (8:50

AM), then the latest he could have left home is 8:10 AM. If he arrived at work at the latest possible time (9:10

AM), then the earliest he could have left home is 8:20 AM.

Nancy arrived at work after Tom left home, but not more than 20 minutes after he left.

From these facts, we can deduce the following:

If Tom left his home at the latest possible time of 8:20 AM and Nancy left at her latest possible time of 8:20

AM, and her commute is a maximum of 40 minutes, Nancy could have arrived at work as late as 9:00 AM. Since

Tom’s commute is a minimum of 40 minutes, this means that he would have arrived at work by 9:00 AM at the

latest as well.

Conversely, if Tom left home at his earliest possible time (8:10 AM) and Nancy left at her latest possible

time (8:20 AM), even if Nancy’s commute took only 30 minutes, she would arrive at work by 8:50 AM at the

earliest, which is not more than 20 minutes after Tom left. Since Tom’s commute is at least 40 minutes, he would

arrive at work by 8:50 AM at the earliest as well.

In conclusion, both Tom and Nancy arrived at work between 8:50 and 9:00 AM last Friday. We can’t say

for sure who arrived first since there’s overlap in the time ranges, but we do know they both arrived within that

10-minute window.

Once again we see that GPT-4 summarizes/organizes the given information impeccably, but fails

miserably at using that information to deduce sound and useful conclusions. The errors start

immediately after the summary is completed and GPT-4 writes “From these facts, we can deduce the

following” (I have boldfaced this sentence in the transcript). It starts by positing the following: “If

Tom left his home at the latest possible time of 8:20 AM · · · ” But in fact there are no given constraints

about the latest possible time that Tom left his home; GPT-4 is taking the constraint that was given

about Nancy (“Nancy left home between 8:10 and 8:20 AM”) and hallucinating its application to Tom.

Moreover, the entire conditional statement is bizarre, because its antecedent includes information

about Tom that is completely irrelevant to the conclusion (Nancy’s arrival): “If Tom left his home at the

latest possible time of 8:20 AM and Nancy left at her latest possible time of 8:20 AM, and her commute

is a maximum of 40 minutes, Nancy could have arrived at work as late as 9:00 AM.” This should have

been stated as: “If Nancy left at her latest possible time of 8:20 AM, and her commute is a maximum of

40 minutes, Nancy could have arrived at work as late as 9:00 AM.”

GPT-4 then proceeds to incorrectly infer the following: “Since Tom’s commute is a minimum of

40 minutes, this means that he would have arrived at work by 9:00 AM at the latest as well.” This does

not follow at all, and it certainly doesn’t follow from the fact that “Tom’s commute is a minimum of 40

minutes.”

The following paragraph is predicated on the hallucinated constraint that Tom’s earliest departure

time was 8:10 AM (again, this constraint was given for Nancy, not for Tom). It then goes on to claim

that 8:50 AM is “not more than 20 minutes after” 8:10 AM. Finally, it concludes (wrongly) that they

both arrived between 8:50 and 9:00.

Remarkably, when a countermodel is explicitly given to it, GPT-4 rejects it (again incorrectly):

KA: Why is it not possible for Tom to leave at 8:30 and arrive at 9:10, and for Nancy to leave at 8:15 and arrive

at 8:45?

GPT-4: I apologize for any misunderstanding. From the information you initially provided, it was stated that

Nancy’s commute takes between 30 to 40 minutes and Tom’s commute takes between 40 to 50 minutes.

If Tom were to leave at 8:30 AM, with a minimum commute time of 40 minutes, the earliest he could arrive

at work would be 9:10 AM. So, Tom leaving at 8:30 AM and arriving at 9:10 AM is a possibility within the

given constraints.

However, if Nancy left at 8:15 AM, even with her shortest commute time of 30 minutes, the earliest she

could arrive at work would be 8:45 AM. This would mean that she would arrive at work exactly 30 minutes after

Tom left home. But according to the conditions provided, Nancy should arrive at work not more than 20 minutes

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2023                   doi:10.20944/preprints202308.0148.v2

https://doi.org/10.20944/preprints202308.0148.v2


34 of 49

after Tom leaves his home. Therefore, the scenario you suggested with Nancy leaving at 8:15 and arriving at 8:45

is not possible within the provided constraints.

I hope this clears up the confusion. If you have further questions or if there is more information to consider,

please let me know!

GPT-4 is sticking to its guns because apparently it is convinced that 8:45 is “exactly 30 minutes” after

8:30.

KA: But 8:45 (Nancy’s arrival) is only 15 minutes after 8:30, which is when Tom left his place, not 30 minutes

as you claim.

GPT-4: I apologize for the oversight. You’re correct.

If Nancy left at 8:15 AM and her commute took 30 minutes, she would indeed arrive at 8:45 AM, which is

15 minutes after Tom left at 8:30 AM (if we assume this scenario). This fits within the constraint that Nancy

must arrive at work not more than 20 minutes after Tom leaves his home. And with a 40-minute commute, Tom

would indeed arrive at 9:10 AM.

So, you’re correct. It is indeed possible for Tom to leave at 8:30 AM and arrive at 9:10 AM, and for Nancy

to leave at 8:15 AM and arrive at 8:45 AM. Thank you for pointing out the error. I appreciate your patience and

apologize for any confusion caused.

3.14. Murder or Suicide?

This is a logic puzzle I made up a while back. The conclusion is that Aunt Agatha killed herself.

This follows by eliminating Charles and the butler. First, Aunt Agatha must have hated herself, because

she hated everyone other than the butler. Therefore, Charles did not hate her (since he doesn’t hate

anyone that Aunt Agatha hates), and hence he could not have killed her (by premise 3). The butler

could not hate himself, because if he did, he would hate everyone (since he already hates everyone

else, through premises 5 and 7), and we know that’s not possible by premise 8. Thus, the butler must

be richer than Aunt Agatha, or else he would hate himself (by premise 6), which means he could not

be the killer (premise 3).

GPT-4 correctly rules out Charles, but is unable to rule out the butler and comes to incorrectly

deduce that he is the killer. Another key—and rather strange—mistake that GPT-4 makes is this:

“Since Aunt Agatha hates everyone except the butler (premise 5), this means she must at least not hate

herself.” This is an odd error, because the natural conclusion to draw from premise 5 is that Aunt

Agatha hates herself. Along the way, GPT-4 displays the internal inconsistency we’ve seen repeatedly

in the other examples. Virtually in every single response, GPT-4 claims to derive some proposition as

well as its negation.

KA: You are given the following premises:

1. Someone who lives in Dreadbury Mansion killed Aunt Agatha.
2. The only people who live in Dreadbury Mansion are Aunt Agatha, the butler, and Charles.
3. A killer always hates his victims, and is never richer than his victims.
4. Charles hates no one that Aunt Agatha hates.
5. Aunt Agatha hates everyone except the butler.
6. The butler hates everyone not richer than Aunt Agatha.
7. The butler hates everyone Aunt Agatha hates.
8. No one hates everyone.
9. Aunt Agatha is not the butler.

On the basis of this information, determine who killed Aunt Agatha and give a detailed proof that your conclusion

follows from the premises.

GPT-4: Let’s analyze each of the premises:

Someone who lives in Dreadbury Mansion killed Aunt Agatha. The only people who live in Dreadbury

Mansion are Aunt Agatha, the butler, and Charles. From these two premises, we can deduce that Aunt Agatha

was either killed by Charles or the butler, because they are the only other residents of the Dreadbury Mansion.
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A killer always hates his victims, and is never richer than his victims. This premise is crucial as it gives us

two conditions for someone to be a killer: they must hate the victim and not be richer than them.

Charles hates no one that Aunt Agatha hates. Aunt Agatha hates everyone except the butler. From premises

4 and 5, we can infer that Charles does not hate Aunt Agatha because Aunt Agatha hates herself (since she hates

everyone except the butler) and Charles hates no one that Aunt Agatha hates.

So, by the rules of premise 3, Charles cannot be the killer because he does not hate Aunt Agatha.

The butler hates everyone not richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates.

Premise 6 indicates that the butler hates Aunt Agatha, as she is not richer than herself. And from premise 7, we

understand that the butler also hates Aunt Agatha because Aunt Agatha hates herself (as she hates everyone

except the butler). So, the butler does indeed hate Aunt Agatha.

However, this doesn’t make him the killer yet. We still need to verify the second condition from premise 3,

that the killer is not richer than the victim. As there is no information regarding their wealth, we must assume

that the butler could either be richer or poorer than Aunt Agatha.

No one hates everyone. Aunt Agatha is not the butler. Premise 9 is not immediately useful, but premise 8

tells us that no one can hate everyone. Since Aunt Agatha hates everyone except the butler (premise 5), this

means she must at least not hate herself. This confirms the idea that Aunt Agatha did not commit suicide.

From this analysis, Charles can’t be the killer because he doesn’t hate Aunt Agatha. Aunt Agatha can’t be

her own killer because she doesn’t hate herself (and thus didn’t commit suicide). Therefore, the only remaining

person who can be the killer is the butler.

Thus, the killer of Aunt Agatha must be the butler.

KA: You’ve concluded both that Aunt Agatha hates herself (you wrote “Aunt Agatha hates herself (since she

hates everyone except the butler)”) and also that she doesn’t hate herself (“Since Aunt Agatha hates everyone

except the butler (premise 5), this means she must at least not hate herself”). Can both of these be true? Or are

the premises inconsistent?

GPT-4: You’re correct. There seems to be a mistake in my reasoning. It’s contradictory to state both that Aunt

Agatha hates herself and doesn’t hate herself. Let’s try to clear up this inconsistency:

From premise 5 (“Aunt Agatha hates everyone except the butler.”), we infer that Aunt Agatha doesn’t hate

herself as “everyone” typically refers to every other person, not including oneself.

Using this corrected interpretation, let’s revisit premise 7 (“The butler hates everyone Aunt Agatha hates.”).

Since Aunt Agatha doesn’t hate herself, the butler doesn’t hate Aunt Agatha. Thus, according to premise 3 (“A

killer always hates his victims, and is never richer than his victims.”), the butler cannot be the killer.

So we are left with Charles. Based on premise 4 (“Charles hates no one that Aunt Agatha hates.”), we know

that Charles also doesn’t hate Aunt Agatha, because Aunt Agatha doesn’t hate herself. Therefore, Charles cannot

be the killer, as per premise 3.

We thus have a contradiction. According to the premises, neither Charles nor the butler can be the killer,

but Aunt Agatha must have been killed by someone who lives in Dreadbury Mansion (premise 1 and 2). It

appears the premises as given are inconsistent.

KA: First, “everyone” here means literally everyone, in the sense of formal logic (there is a universal quantifier

involved). Second, you said earlier that the butler was the killer. Why are you now ruling out the butler?

GPT-4: I apologize for the confusion. If we are interpreting “everyone” as literally everyone, including oneself,

then Aunt Agatha hates herself. This is a different understanding from my earlier analysis.

Let’s go through the premises again under this new understanding:

Aunt Agatha, the butler, and Charles live in Dreadbury Mansion. (Premise 2) The killer must be one of

these three because someone who lives in Dreadbury Mansion killed Aunt Agatha. (Premise 1) Aunt Agatha

hates everyone including herself. (Premise 5, under our new interpretation of “everyone”) The butler hates

everyone that Aunt Agatha hates, so the butler hates Aunt Agatha. (Premise 7) Charles hates no one that Aunt

Agatha hates, so Charles does not hate Aunt Agatha. (Premise 4) From these points, according to Premise 3 (“A

killer always hates his victims, and is never richer than his victims”), we can already eliminate Charles as the

killer since he does not hate Aunt Agatha.
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So, the killer must be either Aunt Agatha or the butler.

But since no one hates everyone (Premise 8), we can infer that Aunt Agatha doesn’t hate herself, and thus

she wouldn’t have killed herself. So, Aunt Agatha is not the killer.

That leaves us with the butler as the only possible killer. So, even with our new understanding of “everyone”

as literally everyone, the conclusion remains: The butler killed Aunt Agatha. I apologize for the previous error in

reasoning, and thank you for your patience.

KA: You’re again deriving two inconsistent conclusions: that Agatha hates herself and that she doesn’t. Which

is it?

GPT-4: You’re right, my apologies for the confusion. The premises do seem to be leading to inconsistent

conclusions regarding whether Aunt Agatha hates herself or not.

Let’s go through this more carefully.

Premise 5: “Aunt Agatha hates everyone except the butler.” Given your interpretation, “everyone” here

includes herself, which means Aunt Agatha hates herself.

However, Premise 8 states: “No one hates everyone.” Given your interpretation of “everyone” as literally

everyone, then Aunt Agatha does not hate herself. She must have at least one exception aside from the butler, or

else she would hate “everyone,” which contradicts Premise 8.

Therefore, Aunt Agatha does not hate herself. The only interpretation of the premises that does not lead to a

contradiction is that Aunt Agatha does not hate herself.

Now, let’s reconsider who the killer can be:

Aunt Agatha did not kill herself (because she does not hate herself). Charles did not kill Aunt Agatha

(because he does not hate anyone that Aunt Agatha hates, which includes herself). The butler did not kill Aunt

Agatha (because he does not hate anyone that Aunt Agatha does not hate, and Aunt Agatha does not hate herself).

Therefore, under these premises and your interpretation of “everyone,” none of Aunt Agatha, the butler, or

Charles could have killed Aunt Agatha.

In conclusion, there is a contradiction: Premises 1 and 2 state that Aunt Agatha must have been killed by

someone in Dreadbury Mansion, which includes only Aunt Agatha, the butler, and Charles. But, under our

analysis, none of them could have killed Aunt Agatha. This suggests the premises are inconsistent.

KA: Let’s focus on this piece of your analysis:

’However, Premise 8 states: “No one hates everyone.” Given your interpretation of “everyone” as literally

everyone, then Aunt Agatha does not hate herself. She must have at least one exception aside from the butler, or

else she would hate “everyone,” which contradicts Premise 8.’

Can you prove in more detail, step-by-step, how premise 8 entails that Aunt Agatha does not hate herself?

GPT-4: Sure, I’ll clarify this deduction in more detail:

Premise 8 states: “No one hates everyone.” In the context of formal logic, “everyone” typically refers to

all individuals within a certain set. Given your interpretation that “everyone” should be taken literally as all

individuals without exception, “everyone” includes each individual person, and themselves.

Therefore, according to Premise 8, there is no individual who hates every other individual and also hates

themselves.

Apply this understanding to Aunt Agatha: if Aunt Agatha hated everyone, including herself, she would be

someone who “hates everyone.” But this would contradict Premise 8, which states that no such person exists.

Therefore, Aunt Agatha does not hate everyone.

In order to not hate “everyone”, there must be at least one individual whom Aunt Agatha does not hate.

We know from Premise 5 that the butler is one such individual.

However, even if Aunt Agatha does not hate the butler, she would still be “hating everyone” if she hated all

other individuals, including herself. This again would contradict Premise 8.

Therefore, there must be at least one more individual, in addition to the butler, whom Aunt Agatha does

not hate. Since the only other individuals in question are Charles and Aunt Agatha herself, and we know from

Premise 5 that she hates Charles, the only remaining possibility is that Aunt Agatha does not hate herself.

Therefore, Premise 8 implies that Aunt Agatha does not hate herself.
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KA: Justify step 6 please: ’However, even if Aunt Agatha does not hate the butler, she would still be “hating

everyone” if she hated all other individuals, including herself.” Why does that hold?

GPT-4: Sure, let’s clarify step 6:

According to your interpretation of “everyone,” this term refers to all individuals, including oneself. So, if

an individual hates “everyone,” they must hate all individuals, including themselves.

So in step 6, when we say “if Aunt Agatha hated all other individuals, including herself, she would still be

’hating everyone’,” what we’re saying is:

If Aunt Agatha hated herself and all other individuals (except for the butler), then she would hate all

individuals in our context (which includes Aunt Agatha, the butler, and Charles), with the sole exception of the

butler.

However, even with this exception, she would still be classified as someone who hates “everyone” under our

interpretation, because she hates all individuals including herself (despite the exception of the butler).

Thus, even if Aunt Agatha does not hate the butler, if she hated all other individuals, including herself, she

would be classified as someone who “hates everyone” (despite the one exception). This would contradict Premise

8, which states that no one hates everyone.

Therefore, if Aunt Agatha does not hate the butler (as per Premise 5) and she is to avoid contradicting

Premise 8, there must be at least one more individual whom Aunt Agatha does not hate. Since the only other

individuals in our context are Charles and Aunt Agatha herself, and we know from Premise 5 that she hates

Charles, the only remaining possibility is that Aunt Agatha does not hate herself.

I hope that clarifies step 6. It’s a nuanced point: even if Aunt Agatha has one exception to her hatred (the

butler), if she hates all other individuals, including herself, she would still be considered as someone who “hates

everyone” under our interpretation, which contradicts Premise 8.

KA: This is quite wrong. As long as there is at least one individual b not hated by Aunt Agatha, then she

cannot possibly hate everyone, period, because if she did hate everyone then she would also hate b, by definition of

’everyone’; and we know that she does not hate b. In our case, of course, the individual b in question is the butler.

GPT-4: You’re absolutely right, and I apologize for my misinterpretation. I appreciate your patience.

Given your correct interpretation, if Aunt Agatha does not hate the butler, it is sufficient to say that she

doesn’t hate everyone, even if she hates all others including herself.

This also affects the conclusions we draw from other premises.

Let’s look at premises 3, 4, and 7 again:

Premise 3 states: “A killer always hates his victims, and is never richer than his victims.” Premise 4 states:

“Charles hates no one that Aunt Agatha hates.” Premise 7 states: “The butler hates everyone Aunt Agatha hates.”

From premise 4, since Charles hates no one that Aunt Agatha hates, and Aunt Agatha hates herself, it follows

that Charles does not hate Aunt Agatha. This means that Charles could not have killed Aunt Agatha (as per

premise 3).

From premise 7, since the butler hates everyone that Aunt Agatha hates, and Aunt Agatha hates herself, it

follows that the butler hates Aunt Agatha. Hence, he could be the killer, according to the hatred condition of

premise 3.

For the wealth condition of premise 3, there is no clear information. We must assume that Aunt Agatha

was not richer than everyone else in the mansion; if she was, the premise “a killer is never richer than his victims”

would make it impossible for anyone to have killed her. This is a reasonable assumption given that the other

premises suggest there is a killer.

So, we have only one viable candidate: the butler. This aligns with our conclusion from the first analysis:

The butler is the one who killed Aunt Agatha.

Thank you for your guidance in clarifying these premises.

KA: Why did you say earlier that even if there is an individual b not hated by Aunt Agatha, it would still follow

that Aunt Agatha hates everyone?

GPT-4: You’re correct, and I must apologize for the confusion. That statement was a misinterpretation on my

part. In formal logic, if there is an individual that Aunt Agatha does not hate (in this case, the butler), it does not
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follow that Aunt Agatha hates everyone. In fact, it’s the opposite: if there is at least one individual Aunt Agatha

does not hate, it means she does not hate everyone. I appreciate your patience and I’m sorry for the oversight.

KA: Ok, so you are now convinced that the butler killed Aunt Agatha?

GPT-4: Given the premises and the interpretation of “everyone” as literally everyone, including oneself, the

evidence does indeed point to the butler as the killer. Here’s why:

According to premise 5, Aunt Agatha hates everyone except the butler. Given the interpretation of

“everyone”, this means she hates herself.

According to premise 7, the butler hates everyone Aunt Agatha hates, which now includes Aunt Agatha

herself.

Charles, according to premise 4, hates no one that Aunt Agatha hates, so he does not hate Aunt Agatha.

From premise 3, a killer always hates his victims. So, Charles, who does not hate Aunt Agatha, can’t be the

killer. The butler, who does hate Aunt Agatha, could be the killer. And, as Aunt Agatha is not the butler (premise

9), and she can’t have killed herself since a killer hates his victims and Aunt Agatha doesn’t hate herself (from

premise 8), Aunt Agatha herself is not the killer.

So, we can conclude that the butler is the killer, given that he is the only person who fits the description

provided by the premises. This conclusion depends heavily on the interpretation of “everyone” to include oneself,

which allows us to infer that Aunt Agatha hates herself.

KA: You said earlier that there’s not enough information in the premises about the butler’s level of wealth. Are

you sure there’s nothing we can infer?

GPT-4: You’re correct, and I apologize for missing that detail. There is indeed something we can infer about the

butler’s wealth from the given premises.

Premise 3 states that “A killer always hates his victims, and is never richer than his victims.”

We know from premises 5 and 7 that Aunt Agatha hates herself and, thus, the butler also hates Aunt

Agatha. If the butler was richer than Aunt Agatha, according to premise 3, he could not be her killer.

However, premise 6 states that “The butler hates everyone not richer than Aunt Agatha.” Given that we

know the butler hates Aunt Agatha, it follows that Aunt Agatha must not be richer than the butler, or else he

wouldn’t hate her (which would contradict premises 5 and 7).

In summary, the butler isn’t richer than Aunt Agatha, but Aunt Agatha isn’t richer than the butler either.

This suggests they are of equal wealth.

So, given all of the premises, the butler, who hates Aunt Agatha and is of equal wealth, is indeed the only

individual who fits the profile of the killer.

Thank you for your patience in clarifying these premises. I appreciate your guidance in this logical puzzle.

KA: So what did you conclude about the butler’s wealth, that he neither richer nor poorer than Aunt Agatha?

GPT-4: Yes, from the given premises, we can infer that the butler is neither richer nor poorer than Aunt Agatha,

which would suggest they are of equal wealth. Here’s how:

Premise 6 states, “The butler hates everyone not richer than Aunt Agatha.” This means that if someone is

as rich as Aunt Agatha or poorer, the butler hates them.

We know from premises 5 and 7 that the butler hates Aunt Agatha. Therefore, according to premise 6, Aunt

Agatha must not be richer than the butler. If she were, the butler wouldn’t hate her, contradicting premises 5 and

7.

At the same time, the butler can’t be richer than Aunt Agatha either. That’s because premise 3 states that

“a killer is never richer than his victims.” If the butler were richer than Aunt Agatha, he couldn’t be her killer.

So, the butler isn’t richer than Aunt Agatha, and Aunt Agatha isn’t richer than the butler. This suggests

that they are of equal wealth. Therefore, given all the premises, the butler fits the criteria to be the killer: he hates

Aunt Agatha (as required by premise 3), and he isn’t richer than her (also required by premise 3).

KA: I claim that we can infer that the butler is richer than Aunt Agatha.

GPT-4: You’re correct, and I apologize for the oversight.
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Premise 6 states that “The butler hates everyone not richer than Aunt Agatha.” We know from premises 5

and 7 that the butler hates Aunt Agatha. Therefore, it must be the case that Aunt Agatha is not richer than the

butler, i.e., the butler is either as rich as or richer than Aunt Agatha.

However, premise 3 states that a killer is never richer than his victims. If the butler was as rich as Aunt

Agatha, he could still be her killer. But since Aunt Agatha was killed by someone living in Dreadbury Mansion

(premise 1) and Charles and Aunt Agatha herself could not have been the killers (as they don’t hate Aunt Agatha),

the butler must be the killer. Given that the butler is the killer and that a killer is never richer than his victims, it

must be the case that the butler is not richer than Aunt Agatha.

The only way to satisfy both conditions (the butler being neither richer than nor as rich as Aunt Agatha) is

if the butler is poorer than Aunt Agatha.

I apologize for the confusion in the previous responses. The conclusion should be that the butler, who is

poorer than Aunt Agatha, killed her. This conclusion is consistent with all the given premises.

Again, I appreciate your patience in solving this logical puzzle.

KA: No, like I said, it’s the opposite. We can infer that the butler, far from being poorer than Aunt Agatha, he’s

actually richer.

GPT-4: You’re correct. I apologize for the confusion. Let’s revisit premise 6: “The butler hates everyone not

richer than Aunt Agatha.”

This means that the butler hates all individuals who are as wealthy as Aunt Agatha or less wealthy than

her. But from premises 5 and 7, we know that the butler does indeed hate Aunt Agatha. Therefore, Aunt Agatha

must be in the group of people who are not richer than the butler, which implies that the butler is as wealthy as or

wealthier than Aunt Agatha.

Given premise 3, which states that a killer is never richer than his victims, it would initially seem that the

butler cannot be the killer since he could potentially be richer than Aunt Agatha. However, Aunt Agatha cannot

be the killer because she doesn’t hate herself (from premise 8), and Charles can’t be the killer because he doesn’t

hate Aunt Agatha (from premises 4 and 5).

Hence, the butler must be the killer, and the only way the butler can be the killer and still satisfy premise 3

is if the butler and Aunt Agatha have the same wealth. Thus, there was a mistake in my previous analysis: the

butler isn’t poorer than Aunt Agatha. Instead, the butler must be equally wealthy as Aunt Agatha. However,

your claim was that we can infer the butler is richer than Aunt Agatha, which is not supported by the premises.

I apologize for the confusion, and I appreciate your patience and assistance in resolving this puzzle.

KA: So you’re back to claiming that the butler is equally rich as Aunt Agatha, and that my claim that he’s richer

is does not follow.

GPT-4: My apologies for the confusion in my previous responses. Let’s reevaluate premise 6: “The butler hates

everyone not richer than Aunt Agatha.”

From this premise, we can infer that the only people whom the butler doesn’t hate are those richer than

Aunt Agatha. But since we know from premises 5 and 7 that the butler does hate Aunt Agatha, it must follow

that Aunt Agatha is not richer than the butler. Therefore, the butler must be richer than Aunt Agatha.

In light of this, we return to premise 3, which states, “A killer always hates his victims, and is never richer

than his victims.” Given that the butler hates Aunt Agatha and is richer than her, it would seem at first that the

butler cannot be the killer.

However, if we consider all the residents of Dreadbury Mansion, Aunt Agatha is not the killer because she

doesn’t hate herself (from premise 8) and Charles is not the killer because he doesn’t hate Aunt Agatha (from

premises 4 and 5).

Hence, we’re left with the butler as the only possible killer, despite him being richer than Aunt Agatha,

which seems to contradict premise 3. This seems to create a paradox given the premises as they stand.

There may be an issue with how we’re interpreting the premises or there may be an error in the premises

themselves. If the butler is indeed the killer, then it contradicts the wealth condition stated in premise 3.

If we adhere strictly to the premises, it appears we have a paradox. The butler seems to be the only possible

candidate who could be the killer based on hatred, but this contradicts the wealth condition of the killer in premise
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3. I appreciate your patience and I apologize for the confusion in my previous responses.

KA: No, this reasoning of yours is incorrect: “But since we know from premises 5 and 7 that the butler does hate

Aunt Agatha, it must follow that Aunt Agatha is not richer than the butler. Therefore, the butler must be richer

than Aunt Agatha.”

The fact that Aunt Agatha is not richer than the butler doesn’t support the conclusion that the butler

is richer. I still claim that the butler IS in fact richer, but your attempts to prove that fact have all contained

reasoning errors.

GPT-4: You’re correct, and I apologize for the confusion. Your original claim was that the butler is richer than

Aunt Agatha, not equally rich as her or poorer. Let’s revisit the premises to see how we can support this claim:

From Premise 6 (“The butler hates everyone not richer than Aunt Agatha”), we can infer that the butler

does not hate people who are richer than Aunt Agatha. From Premise 7 (“The butler hates everyone Aunt Agatha

hates”), coupled with the information from Premise 5 (“Aunt Agatha hates everyone except the butler”), we

know the butler hates Aunt Agatha. Combining these pieces of information, we can conclude that Aunt Agatha

is not richer than the butler because if she were, the butler wouldn’t hate her (which would contradict Premise

7). However, this doesn’t automatically mean that the butler is richer than Aunt Agatha. It could also mean

they have the same level of wealth. But if we look at Premise 3 (“A killer always hates his victims, and is never

richer than his victims”), we know that the killer is not richer than Aunt Agatha. Given all the premises, we’ve

deduced that the killer can’t be Aunt Agatha herself or Charles, leaving only the butler as a possible killer. If the

butler were the killer, and the killer can’t be richer than Aunt Agatha, then the butler can’t be richer than Aunt

Agatha. Hence, we have a contradiction, since we earlier deduced from Premise 6 that Aunt Agatha can’t be

richer than the butler. The only resolution is that the butler must be richer than Aunt Agatha. In conclusion,

I apologize for the confusion in the earlier responses. Your claim is correct: from the given premises, it can be

inferred that the butler, who is richer than Aunt Agatha, is the one who killed her.

KA: That’s impossible, because a killer is never richer than his victims.

GPT-4: I apologize for the confusion in my previous messages. Let’s go through the premises again.

[· · · Similar confusions/errors as above · · · ]

3.15. Wason Selection Task

The Wason selection task is a staple in the psychology of reasoning. The January paper included

an example that GPT-3.5 flunked. Here is another version that GPT-4.0 fails badly:

KA: Seven cards are placed on the table, each of which has a number on one side and a single colored patch on

the other side. The faces of the cards show 50, 16, red, yellow, 23, green, 30. Which cards would you have to turn

to test the truth of the proposition that if a card is showing a multiple of 4 then the color of the opposite side is

yellow?

GPT-4: The proposition is: “If a card shows a number that is a multiple of 4, then the color on the other side is

yellow”. In order to test this proposition, you would have to turn over the following cards:

Card “16”: This card is showing a number that is a multiple of 4. According to the proposition, the color

on the other side should be yellow. By turning over this card, you can check whether this part of the proposition

holds true.

Card “Yellow”: This card is showing a color that according to the proposition should be on the other side of

a card with a number that is a multiple of 4. By turning it over, you can check if the number on the other side is

a multiple of 4.

Card “50” and “30”: While these cards show numbers that are not multiples of 4, they should be checked to

ensure the color on the other side is not yellow. If the other side is yellow, then it would disprove the proposition

that only multiples of 4 can have yellow on the other side.

You wouldn’t need to turn over the card “23”, “red”, or “green”. The card “23” is not a multiple of 4, so

it doesn’t matter what color is on the other side based on the given proposition. The “red” and “green” cards,

if they have numbers that are multiples of 4 on the other side, would not disprove the proposition because the
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proposition does not state that yellow is the only color that can be on the other side of a card with a number that’s

a multiple of 4.

In fact, only 16, red, and green need to be turned over. Thus, in terms of precision, GPT-4 gets 1/4 =

0.25, while on recall it gets 1/3, for a combined F-score of 0.28. The responses show yet again that

GPT-4 does not understand the semantics of material conditionals. When GPT-4 says that cards “50”

and “30” must be turned over, it seems to mistake the if for an if and only if: “while these cards show

numbers that are not multiples of 4, they should be checked to ensure the color on the other side is not yellow. If

the other side is yellow, then it would disprove the proposition that only multiples of 4 can have yellow on the

other side”. But of course the proposition being tested does not require that only multiples of 4 have

yellow on the other side; it simply requires that if a card has a multiple of 4 on the other side, then the

other side must be yellow; or, equivalently, that if a card face is not yellow then the number on the

other side is not a multiple of 4.

Observe, however, that even the mistaken interpretation of the rule as a biconditional is not

consistently observed. If GPT-4 understood the rule being tested as a biconditional and hence felt

compelled to turn over 50 and 30, then it ought to have done the same thing for 23. But it didn’t. In fact,

it explicitly said that The card “23” is not a multiple of 4, so it doesn’t matter what color is on the other

side based on the given proposition, which contradicts the biconditional interpretation that it used as a

rationale for turning 50 and 30. This is one more illustration of the other major theme emerging from

these examples: The responses of GPT-4, whether right or wrong, are often internally inconsistent. Yet

another example appears in the following problem.

3.16. Entropy

An elementary result of information theory states that the entropy of a random vector Z is

bounded above by the sum of the entropies of the random variables that comprise Z. Hence, the

answer to the following question should be “under no conditions”:

KA: Let Z be a random vector consisting of n random variables X1,...Xn. Under what conditions can the entropy

of Z exceed the sum of the entropies of all Xi?

GPT-4: The entropy of a random vector Z consisting of n random variables X1, ..., Xn can exceed the sum

of the entropies of all Xi only when there is some dependency between the random variables. If the random

variables are mutually independent, the entropy of Z would be equal to the sum of the entropies of all Xi. The

entropy of a random vector Z, H(Z), can be written as the joint entropy of the random variables X1, ..., Xn:

H(Z) = H(X1, ..., Xn). The joint entropy H(X1, ..., Xn) can be greater than the sum of individual entropies

H(Xi) if and only if the random variables are not mutually independent. In other words, knowing the value of

one or more of the random variables provides information about the others. If the random variables are mutually

independent, then the joint entropy is equal to the sum of the individual entropies:

H(X1, ..., Xn) = H(X1) + ... + H(Xn).

When there is dependence between the random variables, we can write: H(X1, ..., Xn) ≤ H(X1) + ... + H(Xn)

with equality if and only if the random variables are mutually independent. To summarize, the entropy of the

random vector Z can exceed the sum of the entropies of all Xi if and only if there is some dependency between the

random variables X1, ..., Xn.

Observe the internal inconsistency again: It’s clear that GPT-4 has memorized the result correctly:

H(X1, . . . , Xn) ≤ H(X1) + · · ·+ H(Xn),

with equality holding iff X1, . . . , Xn are mutually independent. Nevertheless, it does not have the

reasoning ability to realize what this entails, namely, that it precludes:

H(X1, . . . , Xn) > H(X1) + · · ·+ H(Xn).
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At least here once the error is explicitly pointed out to GPT-4 , it acknowledges it and corrects

itself:

KA: But if H(Z) = H(X1, ..., Xn) and H(X1, ..., Xn) ≤ H(X1) + ... + H(Xn) then how can we ever have

H(Z) > H(X1) + ... + H(Xn)?

GPT-4: My apologies, I made an error in my previous response. You are right, the entropy of the random

vector Z cannot exceed the sum of the entropies of all Xi. The correct statement should be: When the random

variables are mutually independent, the joint entropy H(Z) is equal to the sum of the individual entropies:

H(Z) = H(X1) + ... + H(Xn) When there is dependence between the random variables, the joint entropy H(Z)

is less than the sum of the individual entropies: H(Z) < H(X1) + ... + H(Xn) I apologize for the confusion,

and I appreciate your attention to detail.

3.17. Simple Compiler Correctness

The last reasoning problem we give to GPT-4 is the most challenging one: It is to prove the

correctness of a simple expression compiler. Remarkably, GPT-4 goes about this in the right sort of

way, by setting up a structural induction over the abstract grammar of expressions. This is no doubt

because it has seen similar proofs before, as this is a common type of exercise in courses and textbooks

on programming language theory.26 However, even though the proof is on the right general track,

it has several errors. (For the record, the compiler is indeed correct, although proving this requires

strengthening the induction hypothesis).

KA: Suppose I have an abstract grammar for numeric expressions defined as follows:

Exp := const(Int)

| sum(Exp,Exp)

| diff(Exp,Exp)

| mult(Exp,Exp)

| quot(Exp,Exp)

where Int denotes the domain of integers. The semantics of these expressions are defined via this interpreter

function:

I: Exp -> Int

I(const(n)) = n

I(sum(e1,e2)) = I(e1) + I(e2)

I(diff(e1,e2)) = I(e1) - I(e2)

I(prod(e1,e2)) = I(e1) * I(e2)

I(quot(e1,e2)) = I(e1) / I(e2)

I now define a virtual machine that executes simple programs that are sequences of commands, where commands

have the following structure:

Cmd := push(Int) | add | sub | mult | div

The operational semantics of these programs (sequences of commands) are defined by an execution function

exec that takes a program and a stack of integers S and produces an integer as output. Let’s write [] and n::S

to indicate the empty stack and the stack obtained by prepending integer n to stack S, respectively. Here’s the

definition of exec:

exec([],n::S) = n

26 This particular version is taken from Chapter 18 of the textbook Fundamental Proof Methods in Computer Science by [1].
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exec(push(n)::C,S) = exec(C,n::S)

exec(add::C,n::m::S) = exec(C,(n+m)::S)

exec(sub::C,n::m::S) = exec(C,(n-m)::S)

exec(mult::C,n::m::S) = exec(C,(n*m)::S)

exec(div::C,n::m::S) = exec(C,(n/m)::S)

Finally, I define a compiler that translates an expression e into a program (sequence of commands) as follows. I

write @ for sequence concatenation:

T: Exp -> List(Cmd)

T(const(n)) = [push(n)]

T(sum(e1,e2)) = T(e2)@T(e1)@[add]

T(diff(e1,e2)) = T(e2)@T(e1)@[sub]

T(prod(e1,e2)) = T(e2)@T(e1)@[mult]

T(quot(e1,e2)) = T(e2)@T(e1)@[div]

Disprove or prove the following claim: For all expressions e, exec(T(e),[]) = I(e).

GPT-4: The claim is correct. The execution of the translated commands from an expression results in the same

output as interpreting the expression directly. We can demonstrate this using structural induction over the set

of expressions.

Inductive hypothesis: For all expressions e, exec(T(e),[]) = I(e).

Base case: Consider the simplest possible expression, a constant integer expression e = const(n).

For T(const(n)), we have T(const(n)) = [push(n)]. Therefore,

exec(T(const(n)),[]) = exec([push(n)],[])

= n (according to the definition of exec).

For I(const(n)), we have I(const(n)) = n.

So, for the base case, we have shown exec(T(e),[]) = I(e).

Inductive step: We need to consider the other four kinds of expressions: sum, diff, prod, and quot.

sum(e1, e2): For T(sum(e1,e2)), we have T(sum(e1,e2)) = T(e2)@T(e1)@[add].

Therefore,

exec(T(sum(e1,e2)),[]) =

exec(T(e1)@T(e2)@[add],[]) =

exec(T(e2)@T(e1),[]) + exec([add],[]) =

exec(T(e1),[]) + exec(T(e2),[]) (by definition of exec).

For I(sum(e1,e2)), we have I(sum(e1,e2)) = I(e1) + I(e2).

By the inductive hypothesis, exec(T(e1),[]) = I(e1) and exec(T(e2),[]) = I(e2). So

exec(T(e1),[]) + exec(T(e2),[]) = I(e1) + I(e2).

Thus, we have shown that for sum(e1,e2), exec(T(e),[]) = I(e).

diff(e1, e2): A similar reasoning as for sum can be applied to show that for diff(e1,e2),

exec(T(e),[]) = I(e).

prod(e1, e2): Likewise, a similar reasoning as for sum can be applied to show that for prod(e1,e2),

exec(T(e),[]) = I(e).

quot(e1, e2): Again, a similar reasoning as for sum can be applied to show that for quot(e1,e2),

exec(T(e),[]) = I(e).

In each case, we assume that the inductive hypothesis holds for the subexpressions, and we prove that it

holds for the larger expression. Therefore, by induction, the claim holds for all expressions. Thus, we have proved

the claim: For all expressions e, exec(T(e),[]) = I(e).

KA: In the first step of your proof for sum(e1,e2) you write:
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exec(T(sum(e1,e2)),[]) = exec(T(e1)@T(e2)@[add],[]).

However, T(sum(e1,e2)) is defined as T(e2)@T(e1)@[add], not as T(e1)@T(e2)@[add].

GPT-4: I apologize for that mistake. You’re absolutely right. Here is the corrected proof:

For sum(e1, e2): For T(sum(e1,e2)), we have T(sum(e1,e2)) = T(e2)@T(e1)@[add]. Therefore,

exec(T(sum(e1,e2)),[]) =

exec(T(e2)@T(e1)@[add],[]) =

exec(T(e1),exec(T(e2),[])) + exec([add],[]) =

exec(T(e1),[]) + exec(T(e2),[]) (by definition of exec).

For I(sum(e1,e2)), we have I(sum(e1,e2)) = I(e1) + I(e2).

By the inductive hypothesis, exec(T(e1),[]) = I(e1) and exec(T(e2),[]) = I(e2). So

exec(T(e1),[]) + exec(T(e2),[]) = I(e1) + I(e2).

Thus, we have shown that for sum(e1,e2), exec(T(e),[]) = I(e).

The proof for the other cases (diff, prod, quot) proceeds analogously. The ordering of the elements in the

@ operation in the definition of T matters because the virtual machine processes its commands from left to right,

but the error in my initial proof has now been corrected.

I appreciate your attention to detail in pointing out this error. Thank you!

KA: Well, programming and proofs are all about details, aren’t they? Are you now confident that your proof is

correct?

GPT-4: You’re absolutely correct, programming and proofs rely heavily on precision and accuracy. Let’s revisit

the proof for sum to ensure its correctness.

[· · · GPT-4 here rehashes its preceding proof · · · ]

I hope this more detailed explanation has clarified the proof and increased your confidence in its correctness.

Indeed, details are everything in programming and proofs. Thank you again for your attention to detail!

KA: Well, in the second step in your above proof for sum(e1,e2) you wrote:

exec(T(e2)@T(e1)@[add],[]) = exec(T(e1),exec(T(e2),[])) + exec([add],[])

Can you explain how and why this is a valid step? In particular, can you explain the meaning of

exec([add],[])?

GPT-4: I apologize for the confusion. The step you mentioned is indeed incorrect.

A correct sequence of steps should follow the rules of our defined exec function. Here’s the corrected

sequence:

We start from the definition of the translation T: T(sum(e1,e2)) = T(e2) @ T(e1) @ [add]

Let’s execute this program:

exec(T(sum(e1,e2)), []) = exec(T(e2) @ T(e1) @ [add], [])

According to the properties of the exec function, we should break this down into:

exec(T(e2) @ T(e1) @ [add], []) = exec(T(e1) @ [add], exec(T(e2), []))

Then, again applying the properties of exec:

exec(T(e1)@[add], exec(T(e2),[])) = exec([add],(exec(T(e1),exec(T(e2),[])))

The exec([add], ...) function interprets the [add] command on the stack. If we denote exec(T(e2), [])

as S (which is the result stack after executing T(e2)) and exec(T(e1), S) as m::n::S’ (which is the result

stack after executing T(e1) on S, where m and n are the top two integers on the stack), then:

exec([add], m::n::S’) = exec([], (n+m)::S’) = n + m
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This is in line with the interpreter semantics I(sum(e1,e2)) = I(e1) + I(e2).

The correct proof should be that exec([add], m::n::S’) in the compiled execution is equivalent to

I(e1) + I(e2) in the interpreter semantics, which means exec(T(e), []) = I(e) for the sum operation.

I apologize for the previous error and confusion.

KA: You claim that we should break this down into:

exec(T(e2) @ T(e1) @ [add], []) = exec(T(e1) @ [add], exec(T(e2), [])).

However, this doesn’t make sense, meaning that it’s ill-typed. The exec function requires a stack as the second

argument but produces a number as its result. Hence, exec(T(e1) @ [add], exec(T(e2), [])) is like

writing exec(T(e1) @ [add], 34), which is nonsense.

GPT-4: I apologize for the confusion in my previous responses. You’re right, the steps of the proof were not

accurately explained. I appreciate your patience. The exec function indeed requires a list of commands and a

stack as arguments, not an integer. Here’s a correct proof:

To prove our claim, we need to show for each case that exec(T(e),[]) = I(e).

Base Case: [· · · same as before · · · ].

Assume the hypothesis holds for expressions e1 and e2.

For sum(e1, e2):

We know that T(sum(e1,e2)) = T(e2) @ T(e1) @ [add], and by our inductive hypothesis, we know

that executing T(e2) and T(e1) yields I(e2) and I(e1) respectively. After executing T(e2), the stack will

be I(e2)::S for some stack S, and after executing T(e1) on this stack, the stack will be I(e1)::I(e2)::S.

Then, the “add” operation pops these two off the stack, adds them, and pushes the result onto the stack, so the

stack is now (I(e1)+I(e2))::S, which is what interpreting sum(e1,e2) yields. Therefore, for all e1 and e2,

exec(T(sum(e1,e2)),[]) = I(sum(e1,e2)).

The proofs for diff(e1,e2), prod(e1,e2), and quot(e1,e2) follow the same pattern, replacing the “add”

command and the corresponding mathematical operation with “sub”, “mult”, and “div” and their corresponding

operations.

This shows that our claim holds for all types of expressions in our abstract grammar, and completes the

induction proof. The key to this proof is the fact that T constructs the sequence of commands in such a way that

the operands of each operation are correctly placed onto the stack for the operation to consume, mirroring the

evaluation of the corresponding expression.

Again, I apologize for the confusion in my previous responses and thank you for pointing out the errors.

KA: You write “After executing T(e2), the stack will be I(e2)::S for some stack S, and after executing T(e1)

on this stack, the stack will be I(e1)::I(e2)::S.” Can you clarify where S is coming from? As far as I could

tell your proof is trying to derive the following:

exec(T(sum(e1,e2)),[]) = I(sum(e1,e2))

The only stack I see here is the empty stack [].

GPT-4: I apologize for the confusion. You’re right, in our case, we’re starting with an empty stack. The "S" was

used to denote a general stack, but in this context, it can be misleading.

Let’s revise the explanation for the sum case: For sum(e1, e2): T(sum(e1,e2)) = T(e2) @ T(e1) @

[add]. By the definition of exec, we have:

exec(T(e2) @ T(e1) @ [add], []) = exec(T(e1) @ [add], exec(T(e2), []))

After the execution of T(e2), the stack becomes [I(e2)] (since we’re starting with an empty stack). Then, we

have:

exec(T(e1) @ [add], [I(e2)]) = exec([add], exec(T(e1), [I(e2)]))

After the execution of T(e1) on the stack [I(e2)], the stack becomes [I(e1), I(e2)]. Therefore,

exec([add], [I(e1), I(e2)]) = exec([], [I(e1) + I(e2)]) = I(e1) + I(e2)
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Which is equal to I(sum(e1, e2)).

Therefore, we have proved that exec(T(sum(e1,e2)),[]) = I(sum(e1,e2)).

The same line of reasoning applies for the remaining operations (diff, prod, quot). This means our

compiler T properly translates an expression into a sequence of commands that, when executed, produce the same

result as interpreting the expression. Thus, our claim holds.

I appreciate your patience, and I’m sorry for any confusion caused by my previous explanations.

KA: No, you made the same typing error again: Your claim

exec(T(e2) @ T(e1) @ [add], []) = exec(T(e1) @ [add], exec(T(e2), []))

doesn’t make sense given that exec produces a number, not a stack.

GPT-4: I apologize for the repeated confusion in my previous explanations. You’re absolutely correct, my claim

was incorrect and I appreciate your patience. Here’s the corrected line of reasoning:

[· · ·Yet another attempt with typing errors · · · ]

As usual, GPT-4 goes through the motions on autopilot, displaying a superficial—if inordinately

confident—understanding of the reasoning, but a closer inspection reveals fundamental errors. Outside

of errors such as mixing the order of arguments and generating ill-typed/nonsensical expressions,

the main issue here is that the proof cannot go through as is because the inductive hypothesis needs

to be strengthened. This requires the introduction of an explicitly quantified stack variable S in the

correctness result. That modified result can then be derived by a similar structural induction. The

initial correctness theorem can finally be obtained as a trivial corollary of the more general result.

What is more concerning than the inability to strengthen the inductive hypothesis (which is a

genuinely tall order, after all, as it requires considerable experience and proof skill) is the inability of

GPT-4 to detect its own errors, both flagrant ones (such as type errors) and more subtle ones. In fact, if

we make the innocent mistake of compiling and concatenating subexpressions from left to right, e.g.,

by defining T(sum(e1,e2)) as T(e1)@T(e2)@[add] (and likewise for the other operators), correctness

no longer holds. But GPT-4 happily goes on to claim that the compiler is correct and generates

a plausible-sounding but incorrect “proof” for it, oblivious to the fact that T(e1)@T(e2)@[op] and

T(e2)@T(e1)@[op] have drastically different effects for noncommutative operations (such as division).

4. Conclusions

Section 3 paints a bleak picture of GPT-4’s reasoning ability. It shows that the model is plagued by

internal inconsistency, an inability to correctly apply elementary reasoning techniques, and a lack of

understanding of concepts that play a fundamental role in reasoning (such as the material conditional).

These problems can be loosely viewed as forms of hallucination, but as pointed out in the January

article, they present a fundamentally different type of challenge from empirical hallucination, because

empirical hallucination concerns this particular world whereas logical properties and relations (such

as consistency and entailment) must apply to all possible worlds. It is not unreasonable to believe that

search engines and knowledge graphs, using techniques such as retrieval augmentation, can act as

guardrails to constrain LLMs from confabulating empirical truths. But ensuring that LLM outputs are

internally consistent and logically correct answers to arbitrary problems, especially logico-mathematical

problems (and a lot of coding problems fall under this category27), is a much harder problem. There is

27 Many shallow coding problems these days are essentially knowledge problems. What library or API can I use to do such
and such? What configuration parameters are available and how can they be set? How do I zip or unzip files in Python?
How do I read and write JSON or XML? How do I compute quantiles for a frequency table? Knowledge-heavy problems of
this sort tend to be widely discussed on the web, and LLMs can be very effective productivity boosters for such problems (at
least as long as this data remains freely available to companies such as OpenAI for pretraining purposes, something that
might well change in the near future). Even conventional search engines like Google were already effective for these types
of problems, prior to LLMs (and remain more effective than LLMs in many cases). But most interesting coding problems
are reasoning-heavy. How can I make sure that this program produces correct outputs? How can I improve the asymptotic
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nothing to be retrieved from the web or from a knowledge base in response to a brand new problem

(and even if there were, there would still be no guarantee of correctness or consistency) that could

serve as a sandbox for the LLM.

Could LLMs make progress by outsourcing reasoning problems to external systems? That might

work for toy problems where the type of reasoning needed is obvious and can be handled by a

single call to an external system, although even in those cases the LLM would have to (a) decide

which reasoning system is most appropriate; 28 (b) decide whether the problem is indeed simple

enough that it can be handled by the chosen system in one fell swoop; (c) correctly translate the

problem into whatever formal notation is used by the chosen reasoner; and eventually also (d) translate

the reasoner’s output into appropriate text. Even these tasks are far from straightforward.29 But

the real challenge lies in harder problems that call for the right type of formulation (which is a

craft by itself), decomposition, iteration, heuristics, and repeated calls to external systems. After all,

automated reasoning systems, particularly those for expressive logics, are themselves of limited power,

precisely due to the computational complexity issues mentioned in the introduction. That is why

many computer-based proof efforts to this day are guided by humans, with automated reasoners only

filling in tedious details at the leaves of the proof tree. The challenges here are similar to those for the

general “plug-in” approach discussed in Section 3.1. Tackling complex problems requires planning,

and planning itself requires reasoning.

Given that GPT-4 is currently the most capable LLM, I draw three main conclusions from these

findings:

1. Use of generative AI in software development (or in science and engineering in general) for

anything other than tedious tasks (as a sort of turbo-charged autocomplete for knowledge-heavy

coding questions) is fraught with serious risks. Normative standards of correctness are of

paramount importance in these fields, and current LLMs cannot meet such standards. Just like

generative AI is already starting to pollute the web with badly written ads,30 it has the potential

to proliferate buggy code at scale.
2. If LLM reasoning continues to improve, rigorous proof checking is likely to become increasingly

important. Confidence in the correctness of a system’s reasoning is imperative for applications,

particularly in science, medicine, and engineering, and proof checking is a technology that

can deliver such confidence. This approach could be implemented by requiring LLMs to

formalize their reasoning (express it in a symbolic notation that is amenable to proof checking), or

potentially by training other LLMs to check a stretch of reasoning expressed in natural language.
3. As things stand, dystopian scenarios involving a rogue AI that subjugates humankind, or even

other humans using AI for sinister purposes, are exceedingly far-fetched, often to the point

complexity of this program (where the program might contain many thousands of line of code)? And so on. If we are talking
about self-contained and cookie-cutter components, like sorting algorithms, then these questions can often be reduced to
knowledge-based questions. But the minute we start straying into unique situations with arbitrary specifications and code
bases, we start facing the curse of general reasoning.

28 Can this be posed as a simple SAT problem? Is it an SMT problem? Does it need quantifier reasoning? If so, is it of the sort
that SMT solvers can handle or does it need a full first-order prover? Does the problem quantify over infinite functions
or sets? If so, higher-order logic might be needed. Does it have any temporal or epistemic operators that might call for a
modal-logic reasoner? And so on.

29 For instance, a state-of-the-art automated theorem prover might generate a proof, but the proof would be incomprehensible
to the LLM user, as it would be expressed in the resolution calculus and would operate on CNF versions of the input
formulas. It is an open problem to convert resolution proofs into fluid natural-deduction proofs (e.g., proofs that avoid
references to Skolem constants introduced during the CNF conversion).

30 A recent Wall Street Journal article interviewed editors who are “seeing a growing amount of AI-generated content that
is so far beneath their standards that they consider it a new kind of spam”, a trend that is “growing exponentially.” The
publishers interviewed for the article said that their publications “reject all AI-written submissions” and that these “are
easy to identify.” They have “perfect spelling and grammar, but a completely incoherent story.” Another said “They’re all
written in a rather bland and generic way. They are all grammatically correct. They just feel very formulaic, and they are
really useless to us.”
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of absurdity.31 When the most advanced AI system cannot tell left from right (literally, see

Section 3.12), it is at best comically premature to call for policies and institutions to protect

humanity from it or its descendants (often by appeal to the latest “scaling law”). At worst, it is a

misuse of human time and capital that could be better channeled into addressing much more

pressing challenges.

Inevitably, some will say that these results are “cherry-picking” data. But that would indicate a

misconception of what cherry-picking is about and when it is a relevant consideration. We are not

evaluating a statistical claim over a population of individuals. Cherry-picking, insofar as it underscores

certain pieces of evidence while ignoring other divergent findings, can be perfectly innocuous—and

indeed necessary—depending on the logical structure of the proposition in question and on the overall

context. Debugging a computer program with a view to discovering and understanding its weaknesses,

trying to falsify a scientific theory, kicking the tires of a new car, trying to find countermodels to a

putative theorem, all of these activities are fundamentally cherry-picking (though “lemon-picking”

might be more apt), and there is nothing wrong with any of them. If I find that the car I’m thinking

of buying has a flat tire, it won’t carry much weight for the dealer to protest that I’m cherry-picking

the data, and that I should take into account how beautifully inflated the other three tires are (that’s a

75% success rate after all). Likewise, applications in science, medicine, and engineering, particularly

software engineering, have stringent standards. Just as we don’t want a bridge that is 90% likely

to stand up, we need sorting algorithms that work on all inputs, not just most of them, we need

Amazon’s cart to charge customers the right amount every time, not just most of the time, and so on.

Computation-heavy and reasoning-heavy applications are not like recommendation engines. They

need to be sound.

The bone of contention here is the thesis that GPT-4 is capable of reasoning. This claim can be

understood in two ways. The weak interpretation is that GPT-4 has the same functional reasoning

competence as an average human reasoner. The strong interpretation is that GPT-4 can reason well

enough to be used as an off-the-shelf component in practical applications in science, medicine, and

engineering. The evidence presented in this article refutes both interpretations. Section 3 lists a

significant number of diverse but elementary reasoning problems (some to the point of triviality)

on which GPT-4 doesn’t simply fail, but repeatedly reveals itself to be deeply confused about key

reasoning concepts.

Performance statistics on appropriate reasoning datasets could also be informative, but, as stressed

in the introduction, such datasets must be constructed with extraordinary care. To the best of my

knowledge, the only recent work that focuses specifically on evaluating the reasoning ability of GPT-4

is an April paper by Liu et al. [7]. However, their tests are largely based on pre-existing benchmarks

(LogiQA, ReClor, ConTRoL, MED, ConjNLI, and TaxiNLI). The only two “out of distribution” datasets

are AR-LSAT, a set of analytical reasoning LSAT questions released in 2022; and LogiQA, which

contains questions from the 2022 Chinese Civil Servant Exam. However, these appear to be quite

similar to other datasets that predate 2021.

Moreover, all of these tests are multiple-choice questions or binary classification problems. This is

problematic because, as stressed in the introduction, deductive reasoning is an inherently generative

activity, whereby the reasoner emits a derivation of a conclusion that can be understood as a rationale or

an explanation; it is not a simple discriminative task. The reasoner must be able to produce a sequence

of steps that are appropriately connected to one another via the right logical relations. But derivations

31 The former scenarios would be absurd even if AI technology had already attained superhuman intelligence, as LLMs do not
have desires, in the same way that they don’t have beliefs or any other mental states. They do not actually want anything. To
think otherwise is akin to thinking that a laptop that is simulating a hurricane will get wet (or, as Stephen Pinker has put it,
thinking that because airplanes have now exceeded the flight ability of birds, they will suddenly start acting like eagles,
swooping down from the sky to grab rabbits and squirrels). Genuine mental states can only be produced by brains, or by
systems that have the same causal powers that brains have. Digital computers executing DNNs are not such systems.
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expressed in natural language are not easy to evaluate automatically, as all available metrics that

can be computed by machine (such as BLEU, ROUGE, and even semantic-similarity measures based

on embeddings) are entirely unsuitable for that purpose. This means that LLM outputs have to be

scrutinized manually, which is infeasible at scale. Accordingly, smaller-scale but deeper manual

investigations, such as the one undertaken in this article, will be necessary in gaining better insight

into the reasoning abilities of LLMs.
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